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PROFESSOR: Ladies and gentlemen, welcome to lecture number two. In this lecture, I would like

to discuss some basic concepts of finite element analysis with regard to the analysis

of continuous systems. We discussed in the first lecture already some basic

concepts of analysis of discrete systems. However, in actuality, in the analysis of a

complex system, we are dealing with a continuous system, and there are some

additional basic concepts that are used in analysis of continuous systems, using

finite element methods. And those additional concept that are used, I want to

discuss in this lecture.

Well, when we talk about the analysis of a continuous system, we can analyze that

system via a differential formulation or a variational formulation. If we use a

differential formulation or variational formulation, of course we obtain continuous

variables, and we have an infinite number of state variables, or rather, if we talk

about displacements, a U displacement, for example, of a rod, as I will be

discussing just now, we will have infinite values of that displacement along the rod.

In the differential formulation or the variational formulation, we would have to solve

for that continuous variable along the rod. Well, we will also notice that in the

analysis of a complex system, we cannot solve the differential equations that we are

arriving at directly, and we have to resort to numerical methods.

Now, some concepts that have been used for a long time are the weighted residual

methods. These have been used by Galerkin least squares approaches to solve the

differential equations that govern the equilibrium motion of the system

approximately. In the variational formulation, the Ritz method has been used for

quite a long time. These are classical techniques, therefore, weighted residual

method and the Ritz method. And what I want to show to you in this lecture is how

the finite element method is really an extension off these methods, or how this
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method, the finite element method, is related to these classical techniques.

Well, when we talk about the differential formulation, we are looking at the

differential equilibrium, or the equilibrium of a differential element of the system.

Now, I want to show to you the basic ideas of a differential formulation by looking at,

or analyzing, this rod. Here we have a rod that is fixed at the left-hand side, on

rollers. x is a variable along the rod. u is the displacement of that rod into this

direction. The rod is subjected, as shown here, to a load , R0 at its right end.

Notice that in this analysis, we assume that plane sections remain plane. In other

words, a section that was originally there at time t greater than 0 has moved to

here. And this movement here is the u displacement. But notice that the vertical

section here remains vertical during the motion.

So at every section, we have only 1 degree of freedom. There's no rotation of that

section. However, this one degree of freedom, u, varies continuously along the rod.

Therefore, the rod itself has really an infinite number of degrees of freedom.

For this very simple system, we could obtain an exact solution. However, I want to

show you how we proceed in analyzing this rod via differential formulation, a

variational formulation, and so on, simply as an example. Therefore, the basic

ideas, really, that I will be putting forth to you, that I will be discussing with you, are

really the important things that I want to expose to you. It's not the analysis of this

very specific problem. It's really the basic idea that I want to clarify to you by looking

at this one problem.

Well, for this problem here, the governing differential equation of motion is shown

here. Notice u once again is the displacement of a section. That is, this

displacement here at that coordinate x. c is given here as square root E over rho,

where E is Young's modulus of the material, rho is the mass density of the material.

t, of course, is the time variable. Notice the cross-sectional area a here, I have also

written down here. This cross-sectional area cancels out on both sides, as you will

see just now.
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Now this question here is obtained in the differential formulation by looking at the

equilibrium of an element. And we might consider this to be the element that I will

now focus our attention on. Here we have that element drawn again. This element

here of length dx is subjected at its left side, because x comes from here as a

variable and brings us up to this station. At the left side here, the element is

subjected to sigma, the stress sigma. At the right side, we have the stress sigma

plus partial d sigma dx. This here really means nothing else than a d sigma, an

increment in the sigma.

Well, the equilibrium requirement for this element here is now that the force on this

side here, that is, sigma times a on this side, which is actually this one here, I should

have pointed to this one-- and this force here, which is the force on the right side. If

we subtract these two forces, that must be equal to the force applied. Or rather, the

d'Alembert force.

Notice that if we look at this element, there's a force on the right, there's a force on

the left. And this being the force on the right, let's call that, say, R1, and let's call

that R2. So I put here R1, I put here R2. And R1 minus R2 must be equal to the

d'Alembert force, which is due to the inertia of the material. This is the basic

Newton's law applied to this differential element.

Now, if we referred back to how we proceeded in the analysis of a discrete system,

we really proceeded in exactly the same way. But our element then was a discrete

element, a discrete spring element. We now use the same concept, but apply those

concepts to a differential element.

So this is the equilibrium equation of the element. The constitutive relation is given

here-- that the stress is equal to e, the Young's Modulus, times the strain. This is

the strain. And notice once again, since we are considering sections to be remaining

plane, and simply move horizontally, the only strain that we're talking about is this

one. If we combine these two equations here, we directly obtain that equation here.

Notice as I mentioned earlier, a cancels out. If a is constant, that's why a does not

enter into this equation, and this substitution for sigma into here gives us the second
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derivative here. Of course, this part here cancels out that part there, and that

second derivative is this one here. The E brought over to this side gives us a 1 over

c squared, where c, once again, is defined as shown here.

The important point, really, is that we are looking here in the differential formulation

at a differential element of length dx at a particular station x. That we're looking at

this element and we establish the equilibrium requirement of that element. R1 minus

R2 shall be equal to the mass of the element times the acceleration.

We also introduced a constitutive relation. So far, clearly, we have used two

conditions for the solution of the problem. The first one is the equilibrium condition.

The second is the constitutive condition, or constitutive requirement. We have to ask

ourselves, where do we satisfy the compatibility condition? Because there are

always these three conditions that we have to satisfy.

Well, the compatibility condition is satisfied by solving this differential equation for

this rod, and obtaining a u that is continuous. In other words, a u that tells that all

the sections have remained together. We did not cut that bar apart.

In the discrete system analysis of the spring system of lecture 1, if you were to think

back to it, we had to satisfy the compatibility condition explicitly, in establishing the

equilibrium equations, because we had to make sure that all the springs remain

attached to the carts. Here we satisfy the compatibility condition by solving this

equation for a continuous u.

Well, the boundary conditions, of course, also have to be stated. And here we have

a boundary condition on the left end of the rod. Remember, please, that the rod is

fixed at its left end, so we have this condition here, and clearly u must be 0 for all

times t at x equals 0.

At the right end, we apply a load R0. And there we have, this being here the area

times the stress at x equals L, E times a du dx. Notice that E du dx is, of course, the

stress, and so we have here this total force at the right end being equal to R0.

We also have initial conditions for the solution of this equation that I showed to you,
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this equation here. We have to have two spatial conditions, two boundary

conditions, one at the left and one at the right end. The ones that I just showed to

you. We also have to have to have two initial conditions, one on the displacement

and one on the velocity. Well, their initial conditions, in this particular example, might

be as shown here. At time 0, all of the displacement are 0. And at time 0, all the

velocities along the rod are 0.

So the basic differential equation given here, once again, plus these boundary

conditions, plus these initial conditions, define the complete problem. I also like to

point out here that this boundary condition here, which does not involve any

derivative, is called an essential, or displacement boundary condition. An essential

boundary condition because it does not involve any derivative when, and this is

important, the highest derivative in this differential equation is 2. The right-hand side

boundary condition is called a natural force boundary condition. It's really involving

forces. And it involves, as a highest derivative, a derivative of order 1 when the

differential equation here involves as the highest derivative a derivative of order 2.

So in general-- and this is a very important point-- we can say the following. If the

highest order of the spatial derivative in the problem governing differential equation

is 2m, in our case, m is equal to 1 for our problem. The highest order of the spacial

derivative in the essential boundary condition is m minus 1. In other words, in this

case, of order 0. The highest order the spatial derivative in the natural boundary

conditions that I just discussed is 2m minus 1, which is 1 in our particular case.

Then if we talk about this problem, we talk about a C m minus 1 variational problem.

It will become apparent to you later on why we call it this way. C m minus 1 means

continuity of order m minus 1. In fact, in the Ritz analysis that we will be performing

later on, that I will discuss with you later on, we find that we need, in the solution of

that kind of problem, only continuity in the Ritz functions of order m minus 1.

Well, let us now look at the variational formulation. I mentioned earlier that we have

two different approaches. The first approach is a differential formulation, the second

approach is the variational formulation. The variational formulation operates in
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much the same way as I introduced it to you for the analysis of discrete systems.

We talk about pi a functional, being equal to the strain energy minus the potential of

the loads.

Now for the rod, the strain energy is given here. Notice this is 1/2 times the stress

times the strain, and integrated over the total volume of the element, or of the rod, I

should rather say. The total potential of the loads is given here. I could have written

it this way, with a minus out there and a plus in there-- same thing. This, then, is

really nothing other than the loads multiplied by the total displacement. And of

course, there's an integration involved here, because the body forces, the body

loads that I introduced here, fB, are varying along the length of the rod. I introduce

these fB body forces because I want to use, later on, the d'Alembert principle, put

these, in other words, equal to minus the acceleration forces, and can directly apply

what I discussed now, also to the dynamic analysis of this rod, which we considered

in the differential formulations.

Together with stating pi as shown here, we also have to state the left-hand

boundary condition, which is an essential boundary condition. We have to list all the

essential boundary conditions here, or the displacement boundary conditions.

Essential and displacement mean the same thing, in that sense.

Well, then we invoke the stationality of pi. We are saying that del pi shall be equal to

0 for any arbitrary variations of u that satisfy, however, the essential boundary

conditions. This boundary condition here. So this has to hold, this statement shall

hold, for any arbitrary variations in u. However, del u 0 shall be 0, that satisfy, in

other words, the essential boundary condition.

Well, if we apply this variation on pi, we obtain directly this result here. Notice that

this part here is obtained by applying the variation on this part here. The variation

operator operates, del operates, much in the same way as a differential operator.

So this tool cancels this at 1/2, and we are left with EA del u del x times the variation

on del u del x. And that is given right there.

The variation on this part here gives us simply a del u times fB, and a del uL times
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R. Of course, uL is equal to is the displacement at x equal to L. And this is,

therefore, the final result.

Now if we look at this, we recognize, really, that this is the principle of virtual

displacement. It's a principle of virtual displacement governing the problem. In

general, we can write this principle as follows. Notice that here, we have variations

in strains, which is that part there. The real stresses are given there, which are

those. And here we have variations in displacement, those operating on the body

forces. There, there.

Notice, I sum here over all body forces in general. We have three components in fB-

- the x, y, and z component. So I list these components in a vector that I call fB.

Similarly, of course, we have three displacement components that appear here in

this vector U. Tau in general has 6 components. Del epsilon also has 6

components. Putting their transpose on the del epsilon vector means that we're

summing the product of the strains times these stresses. Similarly, we are summing

here the product of the displacement components times the force components.

We also have here a contribution due to surface forces. fS are the surface forces. 3

components, again, these are the variations in the surface displacement. So this

part here, del uLR, really corresponds to this part here, involving surface forces. So

the surface forces read again, and the variations in the surface displacements, are

those here.

Now notice that this principle here, or this equation, I should rather say, once again

has to be satisfied for any arbitrary variations in displacements that satisfy the

essential boundary conditions. For the problem of the rod, these del u's have to

satisfy the condition that the variation at the left-hand boundary on u is 0, because

that is the essential boundary condition.

Also, of course, notice that this variation in the u's corresponds to these variations in

the strains. In other words, these strains here are obtained from the variations in the

displacement. That's important. They are linked together. So if we impose certain

variations in the displacement, we have to impose here the corresponding variations
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in strains. Of course, these variations in the displacements give us also variations in

surface displacement. So these here are again linked up with that.

Later on in our formulation of the finite element method, we will write the variations

in the strains here as virtual strains, arbitrary virtual strains. And we are talking

about the strain vector with a bar on top of it. Similarly, a bar here, a bar here,

instead of the variation sign. However, the meaning is quite identical-- what we are

saying here, and this is the principle of virtual displacement that we will be talking

about later on, when we formulate the finite element equations, what we are saying

here really is that this equation has to be satisfied for any arbitrary virtual

displacements and corresponding virtual strains. However, the virtual displacements

have to satisfy the displacement boundary conditions, the essential boundary

conditions.

Well, from this, or rather that, which of course these equations are completely

equivalent, we can go one step further. And if we go one step further, by applying

integration by parts and recognizing that this part here is completely equal to that,

by that I mean taking the variation on the derivative of x is the same as taking the

sorry... by taking variation on the derivative of u with respect to x, that is completely

identical to first taking the variation on u, and then taking the differentiation of that

variation on u with respect to x.

Well, if we recognize that these two things are identical, then using integration by

parts on this equation here, which means, really, on that equation here, for the

special case of the rod that we're now considering, we directly obtain this equation

here. The integration by parts is performed by integrating this relation here first, and

notice that if we do integrate this, we want to lower the differentiation of the virtual

part here and increase the order of differentiation on this part here. And that then

directly gives us these two terms and that term here.

If we then also list this part here together with what we obtain from that part, we

directly obtain this equation here, and we proceed similarly for the coefficients of del

uL, and we obtain this part here. So this equation here is obtained by simply using
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integration by parts on, I repeat, this equation here. We have not used any

assumption. All we did is a mathematical manipulation of this equation in a different

form. And this is the new form that we obtained. Del u0, of course, is the variation of

u at x equals 0.

Now when we look at this relation, we can extract now the differential equation of

equilibrium and the natural or force boundary conditions. How do we extract them?

Well, the first point is that I mentioned already earlier, this part here is 0, because

del u0 is imposed to be 0. So that part is 0. We can strike it out directly.

Now when we look at this part here and that part here and recognize that del u is

now arbitrary, we can directly extract the relation that this must be 0 and that must

be 0. How this is done? Well, first of all, we recognize that this integration here really

goes from 0 plus to L minus, if you want to be really exact. Because at the

boundary, we have the boundary conditions. Of course, this 0 plus means it is

infinitesimally close to 0, and L minus, we are integrating up to a distance

infinitesimally small to actually L. So putting the 0 plus and L minus here is just for

conceptual understanding really necessary.

Well, if we then impose the following variations, say that del uL is 0, is exactly 0,

then this part is out. And then we only have to look at this part. Now we can apply

any arbitrary variation on u from 0 to L minus, and this, then, this total integration,

must be equal to 0. It must satisfy the 0 condition. And that can only be true when

this part here, what is in the brackets, is 0. Because if this is not 0, I can always

select a certain delta u which, when multiplied by that and integrated as shown

here-- remember, this part is not there-- will not give us 0. So therefore, this part

must be 0. And that is our first condition, which is the equilibrium condition of a

differential element. It's the equilibrium condition of a differential element.

Now, if we say, let us look at the right-hand side boundary, and put del u0

everywhere along the length of the rod, except at x equals exactly L. Then this part

would be 0, and this part here is non-zero, provided-- or rather, this part would be

present. And the only way that this part can be 0, as it must be, is that this part
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here, the coefficient on del uL, is actually 0.

So this way, we have extracted two points, two conditions. This part must be 0 and

that part must be 0. We extract these conditions by looking at specific variations on

u. First we look at the variation on u where del uL is 0, and otherwise arbitrary from

x equals 0 to L minus. And then we can directly conclude this must be 0, and

second time around, we say, let del u equal 0 from x equals 0 to L minus, which

makes all of this integral 0, and we can focus all our attention on this part here, and

we directly can conclude that this part now must also be 0.

So this way, then, we extracted the differential equation of equilibrium and the

natural boundary conditions. Very important. Differential equation of equilibrium and

the natural boundary condition. And now we really recognize. of course, that if we

put fB equal to the d'Alembert force, or minus the d'Alembert force, equal to this

right-hand side, substitute from here back into there, cancel out A, we directly obtain

this differential equation. Notice that c is E divided by rho square root E divided by

rho.

Now, the important point really is that by having started off with this pi functional and

that condition, this condition also, and that the variations on u at x equals 0 shall be

identically 0, we directly can extract from this pi functional the differential equation of

equilibrium and the natural boundary conditions. The natural boundary conditions,

in fact, are contained right in there. That's where the natural boundary conditions

appear. The essential boundary conditions are there, and have to be satisfied by

the variations.

So in general, then, we find the following points. The important points are that by

invoking del pi equals 0 and using the essential boundary conditions only, we

generate the principle of virtual displacement, an extremely important fact. And this

will be the starting equation that we will be using to generate our finite element

equations later on.

We also can extract the problem governing differential equation. Therefore, the

problem governing differential equation is contained in the principle of virtual
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displacement, and this one is contained in del pi equals 0, in the del pi equals 0

condition. Of course also satisfying the essential boundary condition.

We also can extract the natural boundary conditions. So these are also contained,

in essence, in pi, and as I showed to you, they're contained really in w. That's where

they appear.

Now in the derivation of the problem governing differential equation, we used

integration by parts. And the highest spatial derivative in pi is of order m. We used

integration by parts m times, and what we're finding is that the highest spatial

derivative in the problem governing differential equation is then 2m. And this then

puts together the complete structure of the equations that we're talking about.

Here I have another view graph that summarizes the process once more. We are

starting with the total potential pi of the system being equal to the strain energy

minus the total potential of the loads. We're using this condition and the essential

boundary condition-- very important-- to generate the principle of virtual

displacement. At this stage, we can solve the problem, and we will do so by using

finite element methods.

We can, however, also go on from the principle of virtual displacement using

integration by parts, and then we would derive the differential equation of

equilibrium and the natural boundary conditions. We can solve the problem. Well,

we can solve the problem at this level really only when we can solve the differential

equation of equilibrium, subject to the natural boundary conditions. And that we can

really only do for very simple systems.

Therefore, this process here, from here onward, can really be followed only for

relatively simple systems. For complex systems, shell structures, complicated shell

beam structures, plane stress systems, real engineering structural analysis

systems, this is not possible, and we stop right there, and we solve our problem this

way, using finite element methods.

Now, the one important point, however, I want to make once more clear-- when we
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proceed this way, we are deriving the differential equation of equilibrium for each

differential element. And this means that when we go this route for the simple

systems that we can go this route, we satisfy the equilibrium condition on each

differential element. However, when we go this route, we will find that we only satisfy

the equilibrium conditions in a global sense, in an integrated sense, using finite

element methods, and that to actually satisfy the equilibrium conditions in a local

sense, meaning for each differential element, we have to use many elements, and

only then, of course, our finite element solution will converge to the solution that we

would have obtained solving the differential equation of equilibrium.

Therefore, when we start from the principle of virtual displacement, if we, as I will

show you, use many elements, we really obtain the same solution as here.

However, if we do not use many elements, if we use a coarse mesh-- we will talk

about a coarse mesh later on-- then we will see that we only satisfy the equilibrium

conditions in a global sense for the complete structure, in an integrated sense for

the complete structure. For each finite element, we will satisfy the equilibrium

conditions, but we will not satisfy the equilibrium conditions accurately for each

differential element-- dx, dy, dz being arbitrarily small-- in the continuous body. That

will become clearer, then, when we actually go through an example.

Now I mentioned earlier that a whole class of classical methods are the weighted

residual methods. In the weighted residual methods, we proceed in the following

way. We consider the steady state problem, which is given here, with these

boundary conditions. Now this operator L2m phi equals R-- this L2m is the operator

that governs the problem. Like in our particular rod problem, L2m would be equal to

delta u delta x squared. So the highest derivative in this spacial operator being 2m,

in this case, 2, for our example.

The boundary conditions can be written this way. And the basic step, then, in the

weighted residual and the Ritz analysis is to assume a solution all of this form,

where phi bar gives us the assumed solution ai are parameters that are unknown,

and fi are bases functions. These are functions that have to be assumed.
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Well, there is, of course, considerable concern on what kind of functions to choose.

In the weighted residual method, these functions here, if you directly operate on this

equation here, should satisfy all boundary conditions. Notice that in the weighted

residual method, here I'm really talking about going on this view graph through the

differential equations of equilibrium and natural boundary conditions, deriving them,

if you want, via this route, and then trying to solve the problem here numerically. We

will actually, as I said earlier, in the finite element process, go this route, but we can

also go that route with the weighted residual methods. In fact, there is a close

relationship between using weighted residual methods at this level and the Ritz

method at that level, the way I will be describing it later on.

But in the weighted residual method, this is the assumption. And then if we look at

this equation here, we can construct an error R, substituting from here into there.

And that capital R error is given by this equation. Notice that this is, of course, our

trial function that we have. And if the right-hand side is 0, everywhere over the

domain, then of course our error would be 0, and we would have solved our

equation that we're looking at here.

That is the equation we want to solve. Since if all of these functions fi satisfy all of

the boundary conditions, then we are satisfying these equations, and all we have to

worry about further is to satisfy this equation. If R is 0, we would also satisfy the

differential equation of equilibrium, and we would have, in fact, the solution.

However, that, of course, would be a very lucky choice on the fi functions. In

general, R will not be identically 0 all over the domain. In fact, how much R, or how

close R will be to 0 will of course depend on the ai. And this is then basically our

objective, namely, to calculate ai values that are making this R, this left-hand side

capital R, as close as possible to 0.

And that can be achieved via the Galerkin method, for example. This is the basic

process. Here we're substituting the R. These are the trial functions, and we're

integrating the product of these over the total domain. The domain here, in the case

of our rod, would simply be the volume of the rod. This is the mechanism that
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generates to us n equations in the trial parameters ai.

In another approach, the least squares method, we would operate on the square of

the error, and minimize the square of the error when integrated over the total

domain with respect to the trial parameters ai. That again gives us n equations, and

we set up these n equations just as we're doing here, to solve for the ai. Knowing,

then, the ai, we can back substitute into this assumption here, and now we have our

approximate solution, phi bar.

If the trial functions have been selected to satisfy the boundary conditions, then of

course phi bar will satisfy the boundary conditions. However, what phi bar will not

satisfy exactly is this equation here. However, we have minimized the error in the

satisfaction of this equation in some sense using the Galerkin method or the least

squares method.

These methods can also be extended when the fi trial functions do not satisfy all of

the boundary conditions, namely, not the natural boundary conditions. They can be

extended to their places, but classically, they have been used with trial functions

that satisfy all boundary conditions. When we were to extend the Galerkin method

for the case where the trial functions do not satisfy the natural boundary conditions,

then we really talk basically about already a Ritz analysis, and that is the next

procedure that I want to introduce to you.

Now of course, if we wanted to really start deriving the Ritz method from the

Galerkin approach-- in other words, if we wanted to derive this Ritz analysis method

from the Galerkin approach, we would have to extend, first of all, this Galerkin

approach to include the natural boundary conditions, and then we would have to

perform integrations on this equation, and we would obtain the Ritz analysis

method. The actual way of starting, of introducing the Ritz analysis method, is to

introduce it as a separate tool.

And it is introduced in the following way. Let pi be the functional of the C m minus 1

variational problem that is equivalent to the differential formulation that we talked

about earlier. Now, the differential formulation that I talked about here is this one.
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That's a differential formulation. And as an example once again, the operator L2m is

del 2 u del x squared. There's a constant here. We could also put an EA in front

here, but that only is a constant. It doesn't change the character of the operator. But

this is basically the operator for the problem that we considered, and of course, our

boundary conditions are also there.

So if we have a pi functional that is equivalent to the differential formulation given in

those two equations that I just pointed out to you again, then in the Ritz method, we

substitute the trial functions, phi bar-- let us look at them again, these are the trial

functions-- into pi, and we generate n simultaneous equations for the parameters

that appear in this assumption here by invoking the stationality of pi. Notice that by

invoking that del pi is 0, we really say that del pi ai is 0 for all i. And that gives us the

condition which we used to set up the individual equations that we need to set up to

solve for the trial parameters ai.

Well, let us look at some of the properties. The trial functions used in the Ritz

analysis need only satisfy the essential boundary conditions, an extremely important

fact. In the classical weighted residual method, as I pointed out, the trial function

should satisfy all boundary conditions. Therefore, they can be very difficult to

choose. In the Ritz analysis method, we only need to satisfy the essential boundary

conditions.

The application of del pi equals 0 generates the principle of virtual displacement. I

mentioned that to you earlier already. And therefore, in effect, we use in the Ritz

analysis this principle of virtual displacement. By invoking del pi equals 0, we

minimize basically the violation of the internal equilibrium requirements and the

violation of the natural boundary conditions.

Well, remember that invoking del pi equal to 0 and then using integration by parts,

we actually generate, we could generate the differential equations of equilibrium

and the natural boundary conditions the way I've shown it to you, for the simple bar

structure. Now, what I'm saying here is that we do not want to generate these

differential equations of equilibrium and natural boundary conditions. However,
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please recognize that they are contained in the equation del pi equals 0. Therefore,

by substituting our trial functions, we violate the internal equilibrium requirements

and the natural boundary conditions, but we will see that we are minimizing that

violation in these conditions here. Also, we will see that we generate a symmetric

coefficient matrix, and K and the governing equations then, our KU equals R, that

we want to solve.

And that is really the basis of the finite element method for the analysis of

continuous systems. Let me now go in detail through an example. Here we have is

simple bar structure which has an area 1 square centimeter from A to B, and from B

to C, B being this point here where the area changes and C being that point there.

From B to C, we have a varying area. This variation in the area is shown here. It's 1

plus y/40 squared is the area at any station y, y being measured from point B, as

you can see here. The length here is 100 centimeters. This length is 80

centimeters. The structure is subjected to a load of 100 newtons here. Notice that

this arrow really lies on top of that dashed line we just separated out for you to

understand that there is this arrow.

So this is the load applied at the mid-line of this structure. We assume once again

for the structure also that there is only the following displacement mechanism. If a

section was originally there, and it is a vertical section to the midline, then it has

moved over, and I grossly exaggerate now, to this position, where this is the

displacement that we're talking about u. Grossly exaggerated, of course.

So we're having a bar structure subjected to a concentrated load fixed at the left

end. And our objective now is to solve this structure, to solve for the unknown

displacement u, being 0 here, of course as a function of x, when this structure is

subjected to that load. Well, in the calculation of this example, I want to display to

you as many of the concepts that we just discussed. Here we have pi being equal to

this value here. The strain energy is given here. Notice this is 1/2 times the stress

times the strain integrated over the volume of the structure. The integration goes

from 0 to 180, because that is the length of that structure. The total potential of the

external load is 100, which is the intensity of the load times the displacement at x
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equal to 180... at x equal to 180. Well, the essential boundary condition is that u is 0

at x equals 0.

I'd like to now consider two different cases for the Ritz analysis. In the case one I

want to use a function that spans u, which spans continuously-- and let me draw it

out here-- from u, from x equals 0, to x equals 180. That is the endpoint. So here

we have this function, this part here and that part there, these are the two trial

parameters that we want to solve for. And we will select them, we will calculate

them, rather, using the Ritz analysis.

Case two, I also use trial functions, but notice now that I'm performing the following.

We have a domain AB-- let me go back once more-- a domain AB, and a domain

BC. And I want to now use one function for AB and one function for BC. The AB

function is simply this one here, a linear variation up to this point. Now notice that

UB is our trial parameter-- that's the one we don't know, our trial function

parameter. x/100 is simply is the function that I'm talking about. And notice that this

function only is applicable for this domain where, let me put down here the length

that is x equal to 100, and this is here x equal to 180.

Now for this part here, I use this function here. Now notice what this function does.

Well, if we look at this part here in front, it involves uB, which is also there, and it

involves uC. uB, by the way, is the physical displacement right here into this

direction. Of course, I'm plotting u upwards here to be able to show it to you. But the

displacement, uB, is the displacement of this point B to the right. uC is the

displacement of this point C to the right.

Then we recognize that this part here corresponds really to a variation such as that.

Notice when x is equal to 100, which is that point, this function here is 1. When x is

equal to 180, which is that point there, this part is equal to 0, because 180 minus

100 is 80, divided by 80 is 1, and 1 minus 1 is 0. So this dashed line corresponds to

this function here. Let me put a dashed line underneath there.

Well, if we now look at this part here, we notice that this part is 0, or this trial

function here is 0 at this point B. And it varies linearly like that across, where this
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part here, of course, denotes uC. That is this one here, solid black line, and here

also, solid black line.

Now the superposition of both these functions, the dashed blue and the solid black

line, give us this function here. So the actual function that I'm talking about is a

linear variation along here, and a linear variation along here, where I plot it vertically

up here-- uB and uC here.

Now, this is a specific case that I want to draw your attention on, because this really

corresponds, as we shall see, to a true finite element analysis. And the reason for it

is that we're talking about one domain here and another domain there. And both of

these domains are identified as finite elements. Well, the first step now is to use pi,

invoke the stationality condition as we did earlier, and this gives us the principle of

virtual displacement. I mentioned it earlier already. Our virtual strains are here. The

stresses are here. The virtual work is on this side. I discussed it earlier already.

We do not want to go now via this route. We first of all want to now obtain the exact

solution. The exact solution is obtained by using integration by parts on delta pi,

being, of course, equal to 0, and extracting the differential equation of equilibrium

for each differential element in this structure. This means that if we are talking here

about the differential element equilibrium of each differential element dx long

anywhere along the structure, in other words, the equilibrium of typically an element

like that. That is a differential equation of equilibrium. And we also, of course, have

the natural boundary conditions. We can also derive the natural boundary

conditions. The solution to this is obtained by integration, and this is the solution

given.

Well, the stresses, then, of course are obtained by differentiation of the u's to get

strains, and multiplying those by E, and these are the stresses in the bar. These are

the exact stresses in the bar that satisfy the differential equations of equilibrium and

the natural boundary conditions. This is the exact solution of this bar problem, the

way I have formulated it.

Now will perform our Ritz analysis. In case one, we use pi equal to this. Notice that I
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have substituted now our trial functions corresponding to case one into the

functional pi. That gives us this term, that term here, and that term here. Notice that

I have broken up the integration from 0 to 100, and 100 to 180, because the area

changes from over this length here, and only for that reason, really, I have broken

up the integrations.

Now this is pi. And if we now invoke, we can integrate this out, and then invoke that

del pi shall be 0, we obtain this set of equations. We solve for a1 and a2, substitute

back into our assumption that we had earlier, and we got this u. Notice that of

course this u displacement does satisfy the essential boundary conditions. It does

satisfy the essential boundary conditions at x equals 0. You can just substitute x

equals 0, and you would see that u is 0.

It does not satisfy, however, the natural boundary condition at x equal to 180. Sigma

is given here, obtained by calculating the strains from here and multiplying by E--

this is our approximate solution to the problem. We are satisfying the compatibility

conditions, because the bar has remained together. No material has been cut away

from it. Also, we are satisfying the constitutive relations, but we do not satisfy the

internal equilibrium on a differential local elements sense. We do not satisfy the

differential equilibrium, and we do not satisfy the natural boundary conditions. But

we satisfy them in an approximate sense.

Case two. Here now we're talking about our two linear functions. And here we

naturally integrate from 0 to 100 for the first linear function, and from 100 to 180 for

the second linear function. Notice this is, again, the area, and notice that this is here

the strain squared. It's strain squared here because our E is out there, which would

give us the stress. And the area here, of course, is equal to 1, which we did not

write down.

The important point is that this is now our pi for these two functions. We again

invoke del pi equal to 0. We obtain now this set of equations. We are solving from

this set of equations uB and uC, given here. Having got uB and uC, of course we

now have the complete displacements along the bar, because we only need to
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substitute back into our original approximations that we looked at earlier. Let me just

get them once more here. We had them here. If we now substitute from uB and uC

into these two equations, we have the complete displacement solution. Of course,

this is an approximate displacement solution. And similarly, our stresses are

approximate.

Now on these last few graphs, I have plotted the solution. And notice that this is

here the direction x. Here we have the point B, here we have the point C, here we

have the point A. Our exact solution, which satisfies the constitutive relations,

compatibility relations, and the differential equations of equilibrium, and all bounded

conditions, is the solid line here. Our solution one, case one, Ritz analysis, is the

dashed line here, and the solution two is this dashed dotted line, down there.

Notice that we are quite close in our Ritz analysis to the exact solution in the

displacement. However, the strains and stresses are obtained by the differentiation

of these displacement solutions, and here I show to you the calculated stresses.

Again, point A here, point B here, point C there.

The important point is the following. In the exact solution, we have the stress of 100

in domain AB, and then we have this curve here, a very high slope there. And in our

solution one, we had this variation in stress. Notice that it goes continuously over

the complete domain, because our assumed displacement function was continuous

also over this domain, and its first derivative was continuous over this complete

domain. So that's why our solution one is continuous there, and in fact, we're seeing

just the straight line there, because our displacement approximation was parabolic.

Our solution two is exact here, 100, and very approximate here for the

displacement. But notice that at the midpoint between B and C, we get very good

results.

Now the important point really is shown here on the last view graph. We note that in

this last analysis, we use trial functions that do not satisfy the natural boundary

condition, and I'm talking now about the piecewise linear functions, in other words,

from A to B and B to C each, just a straight line. We use trial functions that do not
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satisfy the natural boundary conditions. The trial functions themselves are

continuous, but the derivatives are discontinuous at point B. Notice our stresses

here are discontinuous at point B.

For a cm minus 1 variational problem, the way I've defined it, we only need

continuity in the m minus first derivatives of the functions. In this problem, m is 1,

and therefore we only need continuity in the functions themselves, and not in any

derivatives, because we only need continuity in the m minus first derivative. The

domains A and B and B and C are finite elements, and in actuality, we've performed

a finite element analysis.

This is all I wanted to say in this lecture. Thank you for your attention.
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