Topic 7

Two- and ThreeDimensional Solid Elements; Plane Stress, Plane Strain, and Axisymmetric Conditions

Contents:

Isoparametric interpolations of coordinates and displacements

- Consistency between coordinate and displacement interpolations
- Meaning of these interpolations in large displacement analysis, motion of a material particle
■ Evaluation of required derivatives
- The Jacobian transformations

Details of strain-displacement matrices for total and updated Lagrangian formulations

- Example of 4-node two-dimensional element, details of matrices used

[^0]- Finite Elements can in general be cateGORIZED AS
- CONTINUUMM ELEMENTS
- structural elements

In This lecture

- We consider the

2-D CONTINUUM
ISOPARAMETRIC ELEMENTS

- THESE ELEMENTS ARE USED VERY WIDELY
- the elements are VERY GENERAL ELEMENTS FOR GEOMETRIC AND MATERIAL NoNLINEAR CONDITIONS
- we also point out
how general 3-D ELEments are calculated using the same proceDURES

Markerboard

Transparency 7-1

TWO- AND THREE-DIMENSIONAL SOLID ELEMENTS

- Two-dimensional elements comprise - plane stress and plane strain elements - axisymmetric elements
- The derivations used for the twodimensional elements can be easily extended to the derivation of threedimensional elements.

Hence we concentrate our discussion now first on the two-dimensional elements.

Transparency 7-2

TWO-DIMENSIONAL AXISYMMETRIC, PLANE STRAIN AND PLANE STRESS ELEMENTS

Because the elements are isoparametric,

Transparency
7-3

$$
{ }^{0} x_{1}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{1}^{k},{ }^{0} x_{2}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{2}^{k}
$$

and

$$
{ }^{t} x_{1}=\sum_{k=1}^{N} h_{k}{ }^{t} x_{1}^{k}, \quad{ }^{t} x_{2}=\sum_{k=1}^{N} h_{k}{ }^{t} x_{2}^{k}
$$

where the h_{k} 's are the isoparametric interpolation functions.

Example: A four-node element

Transparency
7-4

Transparency 7-5

Example: Motion of a material particle

Consider the material
particle at $r=0.5, s=0.5$:
Important: The isoparametric coordinates of a material particle never change

Transparency
7-6

A major advantage of the isoparametric finite element discretization is that we may directly write

$$
{ }^{t} u_{1}=\sum_{k=1}^{N} h_{k}{ }^{t} u_{1}^{k},{ }^{t} u_{2}=\sum_{k=1}^{N} h_{k}{ }^{t} u_{2}^{k}
$$

and

$$
u_{1}=\sum_{k=1}^{N} h_{k} u_{1}^{k} \quad, u_{2}=\sum_{k=1}^{N} h_{k} u_{2}^{k}
$$

This is easily shown: for example,

$$
\begin{aligned}
& t \\
& x_{i}=\sum_{k=1}^{N} h_{k}{ }^{t} x_{i}^{k} \\
&{ }^{0} x_{i}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{i}^{k}
\end{aligned}
$$

Subtracting the second equation from the first equation gives

$$
\underbrace{{ }^{t} x_{i}-{ }^{0} x_{i}}_{{ }^{t} u_{i}}=\sum_{k=1}^{N} h_{k} \underbrace{\left({ }^{t} x_{i}^{k}-{ }^{0} x_{i}^{k}\right)}_{{ }^{t} u_{i}^{k}}
$$

The element matrices require the following derivatives:

$$
\begin{aligned}
& { }_{o}^{t} u_{i, j}=\frac{\partial^{t} u_{i}}{\partial^{0} x_{j}}=\sum_{k=1}^{N}\left(\frac{\partial h_{k}}{\partial^{0} x_{j}}\right)^{t} u_{i}^{k} \\
& o u_{i, j}=\frac{\partial u_{i}}{\partial^{0} x_{j}}=\sum_{k=1}^{N}\left(\frac{\partial h_{k}}{\partial^{0} x_{j}}\right) u_{i}^{k} \\
& { }_{t} u_{i, j}=\frac{\partial u_{i}}{\partial^{t} x_{j}}=\sum_{k=1}^{N}\left(\frac{\partial h_{k}}{\partial^{t} x_{j}}\right) u_{i}^{k}
\end{aligned}
$$

Transparency
7-8

Transparency 7.9

These derivatives are evaluated using a Jacobian transformation (the chain rule):

$$
\left[\begin{array}{c}
\frac{\partial h_{k}}{\partial r} \\
\frac{\partial h_{k}}{\partial s}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{\partial^{0} x_{1}}{\partial r} & \frac{\partial^{0} x_{2}}{\partial r} \\
\frac{\partial^{0} x_{1}}{\partial s} & \frac{\partial^{0} x_{2}}{\partial s}
\end{array}\right]}_{0 \underline{J}} \overbrace{\left[\begin{array}{l}
\frac{\partial h_{k}}{\partial^{0} x_{1}} \\
\frac{\partial h_{k}}{\partial{ }^{0} x_{2}}
\end{array}\right]}
$$

The required derivatives are computed using a matrix inversion:

$$
\left[\begin{array}{l}
\frac{\partial h_{k}}{\partial^{0} x_{1}} \\
\frac{\partial h_{k}}{\partial^{0} x_{2}}
\end{array}\right]={ }^{0} \underline{J}^{-1}\left[\begin{array}{c}
\frac{\partial h_{k}}{\partial r} \\
\frac{\partial h_{k}}{\partial s}
\end{array}\right]
$$

The entries in ${ }^{0} \underline{\mathrm{~J}}$ are computed using the interpolation functions. For example,

$$
\frac{\partial^{0} x_{1}}{\partial r}=\sum_{k=1}^{N} \frac{\partial h_{k}}{\partial r}{ }^{0} x_{1}^{k}
$$

The derivatives taken with respect to the configuration at time t can also be evaluated using a Jacobian transformation.

We can now compute the required element matrices for the total Lagrangian formulation:	
Element Matrix	Matrices Required
${ }_{0}^{\mathrm{t}} \mathrm{K}_{\mathrm{L}}$ ${ }^{\mathrm{o}} \mathrm{K}_{\mathrm{NL}}$ ${ }_{0}^{\text {t }}$ F	

Transparency
7-13

We define oc so that

For example, we may choose ${ }_{0} \mathrm{C}=\frac{\mathrm{E}(1-v)}{(1+\nu)(1-2 v)}\left[\begin{array}{cccc}1 & \frac{v}{1-v} & 0 & \frac{v}{1-v} \\ \frac{v}{1-v} & 1 & 0 & \frac{v}{1-v} \\ 0 & 0 & \frac{1-2 v}{2(1-v)} & 0 \\ \frac{v}{1-v} & \frac{v}{1-v} & 0 & 1\end{array}\right]$

We note that, in two-dimensional analysis,

$$
\begin{aligned}
& { }_{o} \mathbf{e}_{11}={ }_{o u_{1,1}}+{ }^{\mathrm{t}} \mathbf{u}_{1,1} \quad{ }_{0} u_{1,1}+{ }_{o}^{\mathrm{t}} \mathbf{u}_{2,1} \quad o u_{2,1}, \\
& { }_{o} \mathrm{e}_{22}={ }_{o} \mathrm{u}_{2,2}+{ }_{0}^{\mathrm{t}} \mathrm{u}_{1,2}{ }_{\mathrm{o}} \mathrm{u}_{1,2}+{ }_{{ }_{0}^{\mathrm{t}} \mathrm{u}_{2,2} \quad o u_{2,2}} \\
& 2{ }_{o} \mathbf{e}_{12}=\left({ }_{o u_{1,2}}+{ }_{o} u_{2,1}\right)+{ }^{t}{ }^{t} u_{1,1} o u_{1,2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Initial displacement } \\
& \text { EFFECT }
\end{aligned}
$$

and

$$
\begin{aligned}
& o \eta_{11}=\frac{1}{2}\left(\left(o u_{1,1}\right)^{2}+\left(o u_{2,1}\right)^{2}\right) \\
& o \eta_{22}=\frac{1}{2}\left(\left(o u_{1,2}\right)^{2}+\left(o u_{2,2}\right)^{2}\right) \\
& o \eta_{12}=o \eta_{21}=\frac{1}{2}\left(o u_{1,1} o u_{1,2}+o u_{2,1} o u_{2,2}\right) \\
& o \eta_{33}=\frac{1}{2}\left(\frac{u_{1}}{{ }^{0} x_{1}}\right)^{2}
\end{aligned}
$$

Transparency
7-15

Derivation of ${ }_{0} \boldsymbol{e}_{33},{ }_{0} \eta_{33}$:

Transparency 7-17

Hence

$$
\begin{aligned}
& { }^{t+\Delta t} \varepsilon_{33}=\frac{1}{2}\left[\left(\frac{t+\Delta t}{{ }^{0} d s}\right)^{2}-1\right] \\
& =\frac{1}{2}\left[\left(\frac{{ }^{t+\Delta t} x_{1}}{{ }^{0} x_{1}}\right)^{2}-1\right] \\
& =\frac{1}{2}\left[\left(\frac{{ }^{0} x_{1}+{ }^{t} u_{1}+u_{1}}{{ }^{0} x_{1}}\right)^{2}-1\right] \\
& =\underbrace{\left(\frac{{ }^{t} u_{1}}{{ }^{{ }^{{ }_{x}} x_{1}}}+\frac{1}{2}\left(\frac{{ }^{t} u_{1}}{\left.{ }^{{ }^{x_{1}}}\right)^{2}}\right)\right.}_{{ }_{0}^{t} \varepsilon_{33}}
\end{aligned}
$$

We construct ${ }^{\mathrm{t}} \underline{B}_{\mathrm{B}}$ so that

Entries in ${ }^{\mathrm{t}}{ }^{\mathrm{B}} \mathrm{B}_{\mathrm{L}}$:

This is similar in form to the B matrix used in linear analysis.

Entries in ${ }_{0}^{\prime} \underline{B}_{L_{11}}$:

We construct ${ }^{\mathrm{t}} \mathrm{B}_{\mathrm{NL}}$ and ${ }^{\mathrm{o}} \mathrm{S}$ so that

$$
\delta \underline{u}^{\top}{ }_{0}^{\mathrm{t}} \underline{B}^{\top} \mathrm{NL}{ }^{\mathrm{t}}{ }^{\mathrm{S}} \underline{S}^{\mathrm{t}} \underline{B}_{N L} \underline{\hat{u}}={ }_{0}^{\mathrm{t}} S_{i j} \delta_{0} \eta_{i j}
$$

Entries in ${ }^{\text {t }}$ S:

Entries in ${ }_{o}^{\mathrm{t}} \underline{-}_{\mathrm{NL}}$:

included only for
axisymmetric
analysis
${ }_{0}^{t} \hat{S}$ is constructed so that

Transparency 7-23

$$
\delta \hat{u}^{\top}{ }_{0}^{\mathrm{t}} \underline{B}_{L}^{\top}{ }_{0}^{\mathrm{t}} \underline{\underline{S}}={ }_{0}^{\mathrm{t}} S_{i j} \delta_{0} \mathrm{e}_{i j}
$$

Entries in ${ }_{0}{ }^{t} \hat{S}$:

$$
\left[\begin{array}{l}
{ }^{t} S_{11} \\
0^{t} S_{22} \\
{ }^{t} S_{22} \\
{ }^{t} S_{12} \\
\hline \mathrm{c}^{t} S_{33}
\end{array}\right]-\begin{aligned}
& \text { included only for } \\
& \text { axisymmetric analysis }
\end{aligned}
$$

Example: Calculation of ${ }_{0}^{\mathrm{t}} \underline{B}_{\mathrm{L}},{ }_{0}^{\mathrm{t}} \underline{B}_{N L}$

Transparency
7-24

Transparency
7-26

Example: Calculation of ${ }^{t} \underline{B}_{L},{ }^{t} \underline{B}_{N L}$

Transparency
7-27

Example: Calculation of ${ }^{\mathrm{t}} \underline{B}_{\mathrm{L}},{ }^{\mathrm{t}} \underline{-}_{\mathrm{NL}}$

Transparency
7-28

Example: Calculation of ${ }^{t} \underline{B}_{L},{ }^{t} \underline{-}^{N} N$

Transparency
7-29

Transparency 7-30

We can now perform a Jacobian transformation between the (r, s) coordinate system and the (${ }^{6} \mathrm{X}_{1},{ }^{0} \mathrm{X}_{2}$) coordinate system:
By inspection, $\quad \frac{\partial^{0} X_{1}}{\partial r}=0.1, \frac{\partial^{0} X_{2}}{\partial r}=0$

$$
\frac{\partial^{0} X_{1}}{\partial S}=0 \quad, \frac{\partial^{0} X_{2}}{\partial S}=0.1
$$

Hence ${ }^{0} \underline{J}=\left[\begin{array}{cc}0.1 & 0 \\ 0 & 0.1\end{array}\right],\left|{ }^{0} \underline{J}\right|=0.01$ and

$$
\frac{\partial}{\partial^{0} x_{1}}=10 \frac{\partial}{\partial r}, \frac{\partial}{\partial^{0} x_{2}}=10 \frac{\partial}{\partial \mathrm{~s}}
$$

Now we use the interpolation functions to compute ${ }_{o}^{t} u_{1,1},{ }_{o}^{t} u_{1,2}$:

Transparency 7-31

node k	$\frac{\partial h_{k}}{\partial^{0} \mathrm{x}_{1}}$	$\frac{\partial h_{k}}{\partial^{0} \mathrm{X}_{2}}$	${ }^{\text {t }} \mathrm{u}_{1}^{\mathrm{k}}$	$\frac{\partial h_{k}}{\partial^{0} \mathrm{x}_{1}} \mathrm{u}_{1}^{\mathrm{k}}$	$\frac{\partial h_{k}}{\partial^{0} x_{2}}{ }^{\text {c }}{ }_{1}^{k}$
1	$2.5(1+s)$	$2.5(1+r)$	0.1	0.25(1 + s)	0.25(1+r)
2	$-2.5(1+\mathrm{s})$	2.5(1-r)	0.1	$-0.25(1+s)$	0.25(1-r)
3	-2.5(1-s)	$-2.5(1-r)$	0.0	0	0
4	2.5(1-s)	$-2.5(1+r)$	0.0	0	0
Sum:					

For this simple problem, we can compute the displacement derivatives by inspection:

From the given dimensions,

$$
{ }^{\mathrm{t}} \underline{X}=\left[\begin{array}{ll}
1.0 & 0.5 \\
0.0 & 1.5
\end{array}\right]
$$

Hence

$$
\begin{aligned}
& { }_{0}^{t} u_{1,1}={ }_{0}^{t} X_{11}-1=0 \\
& { }_{0}^{t} u_{1,2}={ }_{0}^{t} X_{12}=0.5 \\
& { }_{0}^{\mathrm{t}} \mathrm{U}_{2,1}={ }_{0}^{\mathrm{t}} \mathrm{D}_{21} \quad=0 \\
& { }_{0}^{t} u_{2,2}={ }_{0}^{t} X_{22}-1=0.5
\end{aligned}
$$

Transparency 7-33 ${ }_{0}^{\mathrm{o}} \mathrm{B}_{\mathrm{L}}$ that correspond to node 3 :

$$
\left.\begin{array}{l}
{\left[\left.\begin{array}{c:c|}
-2.5(1-\mathrm{s}) & 0 \\
0 & -2.5(1-r) \\
-2.5(1-r) & -2.5(1-\mathrm{s})
\end{array} \right\rvert\,\right.}
\end{array}\right]{ }^{{ }^{\mathrm{t}} \underline{B}_{\mathrm{Lo}}}
$$

7-34

Similarly, we construct the columns in ${ }^{\mathrm{t}} \mathrm{B}_{\mathrm{NL}}$ that correspond to node 3 :

$$
\left[\begin{array}{c|c:c|c}
& -2.5(1-s) & 0 \\
-2.5(1-r) & 0 & \\
0 & & -2.5(1-s) & \cdots \\
0 & -2.5(1-r) &
\end{array}\right]
$$

Transparency

We note that the incremental strain components are, in two-dimensional analysis,

$$
\begin{aligned}
& { }_{\mathrm{t}} \mathrm{e}_{11}=\frac{\partial \mathrm{u}_{1}}{\partial^{\mathrm{t}} \mathrm{X}_{1}}={ }_{\mathrm{t}} \mathrm{u}_{1,1} \\
& { }_{\mathrm{t}} \mathrm{e}_{22}={ }_{\mathrm{t}} \mathrm{u}_{2,2} \\
& 2{ }_{\mathrm{t}} \mathrm{e}_{12}={ }_{\mathrm{t}} \mathrm{u}_{1,2}+{ }_{\mathrm{t}} \mathrm{U}_{2,1} \\
& { }_{t} e_{33}=u_{1}{ }^{t} x_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
& { }_{\mathrm{t}}^{\eta_{11}}=\frac{1}{2}\left(\left(\mathrm{t}_{1,1}\right)^{2}+\left({ }_{\mathrm{t}} \mathrm{u}_{2,1}\right)^{2}\right) \\
& { }_{\mathrm{t}} \eta_{22}=\frac{1}{2}\left(\left({ }_{\mathrm{t}} \mathrm{u}_{1,2}\right)^{2}+\left({ }_{\mathrm{t}} \mathrm{u}_{2,2}\right)^{2}\right) \\
& { }_{\mathrm{t}} \eta_{12}={ }_{\mathrm{t}} \eta_{21}=\frac{1}{2}\left(\mathrm{t}_{1,1} \mathrm{t}_{1,2}+{ }_{\mathrm{t}} \mathrm{u}_{2,1} \mathrm{t}_{2,2}\right) \\
& { }_{\mathrm{t}} \eta_{33}=\frac{1}{2}\left(\frac{\mathrm{u}_{1}}{{ }_{\mathrm{t}}^{\mathrm{x}_{1}}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We construct }{ }^{t} \underline{B}_{\mathrm{B}}^{\mathrm{L}} \text { so that } \\
& {\left[\begin{array}{r}
{\left[\begin{array}{r}
{ }^{t} e_{11} \\
{ }^{t} e_{22} \\
2{ }_{\mathrm{t}} \mathrm{e}_{12}
\end{array}\right.} \\
{ }_{\mathrm{t}} \mathrm{e}_{33}
\end{array}\right]=\begin{array}{l}
\mathrm{t} \underline{e}={ }_{\mathrm{t}}^{\mathrm{t}} \underline{B}_{\mathrm{L}} \underline{\hat{u}} \\
\text { only included for }
\end{array}}
\end{aligned}
$$

Entries in ${ }_{\underline{t}}^{\mathrm{E}_{\mathrm{L}}} \mathrm{L}$:

only included for axisymmetric analysis
This is similar in form to the B matrix used in linear analysis.

Transparency 7-41

Entries in ${ }^{\mathrm{t}} \mathrm{T}$:

Entries in ${ }_{\underline{\mathrm{t}} \underline{-}_{\mathrm{NL}} \text { : }}$

included only for axisymmetric analysis
${ }^{\mathrm{t}} \hat{\underline{\tau}}$ is constructed so that

$$
\delta \underline{\hat{u}}^{\top} \underline{t}_{\underline{B}}^{\top}{ }^{\mathrm{t}} \underline{\underline{T}}={ }^{\mathrm{t}} \boldsymbol{\tau}_{i j} \delta_{\mathrm{t}} \mathrm{e}_{i j}
$$

Entries in ${ }^{\mathbf{t}} \hat{\boldsymbol{T}}$:

$$
\left[\begin{array}{c}
{ }^{\mathrm{t}} \boldsymbol{T}_{11} \\
{ }^{\mathrm{t}} \boldsymbol{T}_{22} \\
{ }^{{ }_{\mathrm{t}} \boldsymbol{T}_{12}} \\
\hline{ }^{{ }^{\mathrm{t}} \boldsymbol{T}_{33}}
\end{array}\right] \quad \begin{aligned}
& \text { included only for } \\
& \text { axisymmetric analysis }
\end{aligned}
$$

Three-dimensional elements

Transparency
7-44

Transparency 7-45

Here we now use

$$
\begin{aligned}
& { }^{0} x_{1}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{1}^{k}, \quad{ }^{0} x_{2}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{2}^{k} \\
& { }^{0} x_{3}=\sum_{k=1}^{N} h_{k}{ }^{0} x_{3}^{k},
\end{aligned}
$$

where the h_{k} 's are the isoparametric interpolation functions of the threedimensional element.

Also

$$
\begin{aligned}
& { }^{t} x_{1}=\sum_{k=1}^{N} h_{k}^{t} x_{1}^{k},{ }^{t} x_{2}=\sum_{k=1}^{N} h_{k}{ }^{t} x_{2}^{k} \\
& { }^{t} x_{3}=\sum_{k=1}^{N} h_{k}{ }^{t} x_{3}^{k}
\end{aligned}
$$

and then all the concepts and derivations already discussed are directly applicable to the derivation of the three-dimensional element matrices.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: Textbook:
 Example:
 Sections 6.3.2, 6.3.3
 6.17

