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Problems for Chapter 3

For Section 3.3:

Prob. 3.3.1 In writing Eq. 3.2.3, the inertia of the charge carriers is ignored. Add inertial terms
to the equations, assume that the magnetic field is zero and consider an imposed electric field ý =
Re 2 exp(jwt). Show that the effects of inertia are negligible if W << V+. For copper, the electron
mobility is about 3 x 10- 3 m2/volt sec, while q /m = 1.76 x 1011 m2/sec 2 volt. What must the frequency
be to make the electron inertia significant?

For Section 3.5:

Prob. 3.5.1 For the system of Probs. 2.11.1 and 2.13.1,

(a) Show that the reciprocity condition requires that C21 = C1 2.
(b) Find the electrical forces (fl,f2) in terms of(vl,v 2,El, 2) that tend to displace the movable

plate in the directions (El'E2,) respectively.

Prob. 3.5.2 In Fig. 3.6.1, a dielectric slab is pictured as being pulled upward between plane parallel
electrodes from a dielectric fluid having the same permittivity as the slab.

(a) What is the total coenergy, w'(v,ý)? (Ignore fringing fields.)

(b) Use the force-energy relation, Eq. 3.5.9,to find the polarization force tending to make the slab
rise.

Prob. 3.5.3 Determine the electrical force tending to increase the displacement E of the saturable
dielectric material of Prob. 2.13.2.

Prob. 3.5.4 For the MQS configuration described in Probs. 2.12.1 and 2.14.1,

(a) Find the radial surface force density Tr by using the coenergy function to obtain Tr(il,i2',).
(b) Compare the operations necessary to obtain Tr(X1,Nix) using the energy function w to those

using w'. Even though the coenergy formulation is more convenient for this problem, the energy
function is more convenient if one or more flux linkages are constrained.

(c) If the inner coil is shorted at a time when its flux linkage is X2 = 0, what is Tr(X• )?

For Section 3.6:

Prob. 3.6.1 In a fluid at rest, external force densities are held in equilibrium by the gradient
of the fluid pressuie p. Hence, force equilibrium for each incremental volume of the fluid subject
to a force density F is represented by

4.
Vp = F

Suppose that the bottom of the dielectric slab pictured in Fig. 3.6.1 is well above the lower edges
of the electrodes, so that the fringing field, and hence the VE2 , is confined to the liquid dielectric.
Then there is no Kelvin force density acting on the slab, and the force density of Eq. 3.6.7 prevails in
the liquid. Use Eq. 3.6.7 in Eq. 3.6.1 and integrate from the exterior free surface to the bottom of the
slab to find the fluid pressure acting on the bottom of the slab. Show that this pressure, acting over
the bottom of the slab, gives a net upward force that is consistent with the result of Prob. 3.5.2.

Prob. 3.6.2 Use arguments similar to those leading to Eq. 3.6.4 to show that the torque on an electric
dipole is

T=PxE

Based on arguments similar to those used in deducing Eq. 3.6.12 from Eq. 3.6.5, argue that the torque
on a magnetic dipole is

T = o0m x H

For Section 3.7:

Prob. 3.7.1 Show that the last paragraph in Sec. 3.7 is correct.
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For Section 3.9:

Prob. 3.9.1 One way to show that Eq. 3.9.17 can be used to compute T is to write Eq. 3.9.16 in
Cartesian coordinates and use the symmetry of the stress tensor to bring the components of r inside
the spatial derivatives. Carry out these steps and then use the tensor form of Gauss' theorem to
obtain Eq. 3.9.17.

For Section 3.10:

Prob. 3.10.1 For certain purposes, the electric force density in an incompressible liquid with no
free charge density might be represented as

F = 2V(EE)

where E is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the grad-
ient of a pressure and that the accompanying stress components are

T = £E.E.ij EE13

Prob. 3.10.2 A fluid has the electrical constitutive law

+ + +++4-
D = alE + a2(E'E)E

It is inhomogeneous, so that al and a2 are functions of the spatial coordinates. There is no free
charge density and the fluid can be assumed incompressible. Integrate the conservation of coenergy
equations to show that the coenergy density is

1 ++ ~ 2 +-+ 2
' = 22lE'E + - (E.E)

.f Find the force density F in terms of E, al and a2. Find the stress tensor T.ij associated with this
force density. Prove that F can be written in the form = -V~ + VW, where P is the polarization
density.

Prob. 3.10.1 For certain purposes, the electrical force density in an incompressible liquid with no
i4 d

free charge dens.LLy M ghILL Ube represente asiL

F EV (E*E)F2

where s is a function of the spatial coordinates. Show that this differs from Eq. 3.7.22 by the
gradient of a pressure, and that the accompanying stress components are

Tj = SE.E.

Prob. 3.10.2 A fluid has the electrical constitutive law

_ +4. 4_+ + +
D = (So+a1)E+ 2(E)E

It is inhomogeneous, so that al and a2 are functions of the spatial coordinates. There is no free

charge density and the fluid can be assumed incompressible. Integrate the conservation of coenergy

equations to show that the coenergy density is

1 4-+ a2 2
W' = -(o a1)E2E +E (E*E)

Find the force density F rn terms of E, al and a 2 . Find the stress tensor Tij associated with

this force density. Prove that F can be written in the form

F = P .VE + Vr

where P is the polarization density.

Problems for Chap. 3
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Prob. 3.10.3 Fig. P3.10.3 shows a circular cylindrical tube of inner
radius a into which a second tube of outer radius b projects half way.
On top of this inner tube is a "blob" of liquid metal (shown inside the
broken-line box) having an arbitrary shape, but having a base radius
equal to that of the inner tube. The outer and inner tubes, as well as
the blob, are all essentially perfectly conducting on the time scale of
interest. When t=0 , there are no magnetic fields. When t=O+, the outer

-t.
tube is used to produce a magnetic flux which has density Bo z a distance
2 >> a above the end of the inner tube. What is the magnetic flux dens-
ity over the cross section of the annulus between tubes a distance 2
(2 >> a) below the end of the inner tube? Sketch the distribution of
surface current.on the perfect conductors (outer and inner tubes and
blob), indicating the relative densities. Use qualitative arguments
to state whether the vertical magnetic force on the blob acts upward
or downward. Use the stress tensor to find the magnetic force acting
on the blob in the z direction. This expression should be exact if
2 >> a, and be written in terms of a, b, Bo and the permeability of
free space yo.
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t I I
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Fig. P3.10.3

Prob. 3.10.4 The mechanical configuration is as in Prob. 3.10.3. But, instead of the magnetic field,
an electric field is produced by making the outer cylinder have the potential Vo relative to the inner
one. Sketch the distribution of the electric field, and give qualitative arguments as to whether the
electrical force on the blob is upward or downward. What is the electric field in the annulus at
points well removed from the tip of the inner cylinder? Use the electric stress tensor to determine

the z-directed electric force on the blob.

+ 4 .

Prob. 3.10.5 In an EQS system with polarization, the force density is not F = PpE + PfE, where Pp
is the polarization charge. Nevertheless, this force density can be used to correctly determine the

total force on an object isolated in free space. The proof follows from the argument given in the

paragraph following Eq. 3.10.4. Show that the stress tensor associated with this force density is

1
T.. = oEiEj 2-ijo.EEkE

Show that the predicted total force will agree with that found by any of the force densities in

Table 3.10.1.

Prob. 3.10.6 Given the force density of Eq. 3.8.13, show that the stress tensor given for this
force density in Table 3.10.1 is correct. It proves helpful to first show that

S÷ aH. aH
[(VxH) x B]i = (- - • B.

i ax. JJ 1

Prob. 3.10.7
Table 3.10.1.

Given the Kelvin force density, Eq. 3.5.12, derive the consistent stress tensor of
Note the vector identity given in Prob. 3.10.6.

Prob. 3.10.8 Total forces on objects can sometimes be found by the energy method "ignoring" fringing
fields and yet obtaining results that are "exact." This is because the change in total energy caused
by a virtual displacement leaves the fringing field unaltered. There is a "theorem" than any config-
uration that can be described in this way by an energy method can also be-described by integrating
the stress tensor over an appropriately defined surface. Use Eqs. 3.7.22 of Table 3.10.1 to find

the force derived in Prob. 2.13.2.

For Section 3.11:

Prob. 3.11.1 An alternative to the derivation represented by Eq. 3.11.7 comes from exploiting an
integral theorem that is analogous to Stokes's theorem.1
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Prob. 3.11.1 (continued)

V x d = [n•V• - n*(V)nda (1)
C S

Here VV is a dyadic operator defined in Cartesian coordinates such that, "premultiplied" by -, it has
the components

[n n nZ]x y z

3V aV av
X X x

ax ~y •z

aV 8av avy

ax ay az

av av av
z z z

ax 5y 9z

(2)

Hence,

[ avx av av]
SX ax Y x x ax

i n x n z3 + nz (3)
y ay Y y -z

[n x + n + n a
z x z Y 9z -8•-

4 -+
Show that if V = YEn, it follows that

- nx d =A [-nYE(V-n) - n(n.VyE) + VYE]da (4)

C S

Thus if it is recognized that

ffi4 1 1
nyE V-n = nyE(- + )

1 2

(see Sec. 7.6) and that

VEYE VyE - n(n.VYE)

then Eq. 3.11.7 follows.

Prob. 3.11.2 A force density is concentrated in interfacial regions where it can be represented by
a surface force density 1. The total force on any material supporting this surface force density is
then found by integrating the surface force density over the surface upon which it acts:

f = T da (1)

s

Suppose that the surface S is closed and that the external stress contributions to the surface force
density are negligible, so that it is given by the second and third terms in Eq. 3.11.8. Use the
integral theorem given in Prob. 3.11.1 to show that the resulting net force is zero.
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