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4

Electromechanical Kinematics:
Energy-Conversion Models and
Processes



4.1 Objectives

Beginning with this chapter, progressively more electromechanical "degrees of freedom" are consid-
ered. The subject of electromechanical kinematics is first because then the relative mechanical motions
as well as the paths and trajectories of charges and currents are known from the outset. The mechanics
involves rigid-body translations or rotations, while charges and currents might be constrained by elec-
trodes and wires. Processes in this category can be represented by lumped-parameter models. The field
approach of this chapter provides the basis for conceptualizing and interrelating such interactions,
for appreciating energy conversion limitations, and for deriving the parameters used in lumped-param-
eter models.

The representation of total forces and torques in terms of Maxwell stresses is developed in Sec. 4.2,
followed in Sec. 4.3 by a classification of common types of energy converters, based on the fundamental
field interactions. An extension of the transfer relations found in Secs. 2.16 and 2.19 to describe
regions occupied by specified distributions of charge and current is made in Secs. 4.5 and 4.8.. Although
this chapter is concerned with modeling specific interactions, it is the technique for representing
these systems that is the message. Section 4.4 exemplifies the notation and strategy underlying the
methodical formulation of complex systems in not only this chapter, but those to follow. Of the remain-
ing sections, only one does not pertain to a specific class of devices. Section 4.12 lends some for-
mality to the philosophy underlying quasi-one-dimensional models. Such approximations retain nonlinear
interactions and are illustrated in Secs. 4.13 and 4.14. By contrast, Secs. 4.4, 4.6 - 4.9 and 4.11
are concerned with field models that are naturally linear, or are linearized. Formally, the linearized
model, in which products of amplitudes are ignored compared to terms that are linear in the amplitudes,
is the zero-order approximation in an amplitude-parameter expansion for the exact solution. Similarly,
the quasi-one-dimensional model is a zero-order approximation to an expansion in a space-rate parameter.

The analogies that exist between electric and magnetic field interactions is a theme throughout
the chapter. This is clear in Sec. 4.3. But a thoughtful comparison of the characteristics of the
d-c magnetic machine, considered in more detail in Sec. 4.10, with those of the Van de Graaff machine in
Sec. 4.14 is worth while.

An overview of the chapter is given in Sec. 4.15.

4.2 Stress, Force and Torque in Periodic Systems

The configurations shown in Fig. 4.2.1 typify devices exploiting force or torque producing inter-
actions between spatially periodic excitations on a "stator" structure and spatially periodic con-
strained or induced sources on a "rotor." In each of these, the interaction is across an air gap, a
region having the electromagnetic characteristics of free space. The planar configuration of
Fig. 4.2.1a might represent a linear motor or generator with the relevant force between "stator" (above)
and "rotor" (below) z-directed, or it might be a developed model for the cylindrical geometry of
Fig. 4.2.1c9(appropriate in the limit where the air-gap spacing is small compared to the radius of the
rotor). Figure 4.2.1b shows the cross section of either a planar "slab" with the interaction across
two air gaps, or a cylindrical structure having an annular air gap. In either case the relevant net
force is z-directed.
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Fig. 4.2.1. Typical "air-gap" configurations in which a force or torque on a rigid "rotor" results

from spatially periodic sources interacting with spatially periodic excitations on a rigid
"stator." Because of the periodicity, the force or torque can be represented in terms of the
electric or magnetic stress acting at the air-gap surfaces S1: (a) planar geometry or devel-
oped model; (b) planar or cylindrical beam; (c) cylindrical rotor.
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The total force acting in the z-direction on the "rotor" of Fig. 4.2.1a is conveniently determined
by integrating the Maxwell stress, in accordance with Eq. 3.9.4, over the surface S enclosing a portion
of the rotor having one fundamental length of periodicity. The portion Sl of this surface is at an
arbitrary plane x = constant in the air gap. Because the fields and hence the stress components Tzz
are periodic in z, thq contributions to the integration of the stress over surfaces S2 and S4 cancel
regardless of where S1 is located in the air gap. The contribution to the integration over S3 can
vanish for several reasons. The rolor mny be perfectly permeable, of infinite permittivity or in-
finitely conducting, in which case H or E is zero on S3. In Cartesian coordinates, the fields associ-
ated with excitations that are periodic in the z-direction decay in the x direction and if S3 is well
removed from the air gap, the contribution on S3 asymptotically vanishes. Yet another possibility is
that the planar model really is a.developed model for the cylindrical configuration of Fig. 4.2.1c,
in which case the surface S is "pie" shaped and the section S3 does not exist. In any of these cases,
the z-directed force acting on the rotor of Fig. 4.2.1a is simply

f = A z S (1)

where A is the y-z area of the air gap and Tzx is the magnetic or electric stress tensor, as the case

may be. The brackets indicate a spatial average is taken, as discussed in Sec. 2.15.

There is no question as to which of the stress tensors in Table 3.10.1 should be used. As dis-
cussed in Sec. 3.10, in the free-space region of the air gap, all of the magnetic and all of the elec-
tric stress tensors agree.

If Fig. 4.2.1b represents a planar layer, then there are stress contributions from surfaces S1
and S3 , and the net force acting on a section of the layer having area A in the y-z plane is

fz = A[ (Tz l - TZX 3 (2)

On the other hand, if the "rotor" in that figure is a cylinder, then the net force takes the form of
Eq. 1, with A the area of an enclosing cylindrical surface and appropriate shear stress Tzx * Tzr
evaluated on that surface.

In computing the net torque on the rotor of Fig. 4.2.1c, it is tempting to multiply the space-
average shear stress <TO 6•by the lever arm R and the area A of a cylindrical enclosing surface
having radius R:

Tz = RA (3)

Because the stress is symmetric, this notion is rigorous, as can be seen by applying Eq. 3.9.16 to the
surface S1 of Fig. 4.2.1c.

4.3 Classification of Devices and Interactions

Based on the developed or linear air-gap configuration of Fig. 4.2.1a, this section begins with
illustrative simplified examples of "synchronous" and "d-c" magnetic and electric interactions. Then,
a general discussion is given of the various classes of machines, some having lumped-parameter models
developed in later sections of this chapter and in the problems.

In parallel, consider first the electric and magnetic configurations of Part 1 of Table 4.3.1.
Even though the devices might in fact be developed or "linear," the terms stator and rotor will be
used to refer to the elements on respective sides of the air gap. The magnetic field is produced by
spatially sinusoidal distributions of current modeled as current sheets on the surfaces of the stator
and rotor. Because the stator and rotor are modeled as infinitely permeable, A = 0 outside the air
gap and the surface currents "terminate" the tangential fields (Eq. 2.10.21). The electric field is
produced by electrodes constrained to have spatially periodic potentials. Thus, boundary conditions
at the air-gap boundaries (s) and (r) are

Hs Re[i s exp(-jkz)] 0s = Re[iý exp(-jkz)]z

Hr = Re[-Kr exp(-jkz)] 0r = Re[Vr exp(-jkz)] (1)
z I

where (s,Kr) and (Vsr)are given complex functions of time. (Complex notation is introduced in
Sec. 2.15.)

With the surface S1 taken as the rotor surface, (r), it follows from Eq. 4.2.1 and the average
theorem, Eq. 2.15.14, that the force on a section of the rotor having area A is

Secs. 4.2 & 4.3
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Table 4.3.1. Basic configurations illustrating classes of electromechanical
interactions and devices. MQS and EQS systems respectively in
left and right columns.

sources imposed on
moving member

I. currents (potentials) con-
strained on both windings
(electrodes)

2.current (potential) con-
strained on "stator" and
permanent magnetization
(polarization) on "rotor"
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on "rotor" having saliency
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A -r Ar* A *
f = ReoH (H) =- RepoH -K)z 2 o x z 2o

A Ree =r*A Re e *
z ox z =2 ox

The gap transfer relations, Eq. (a) of Table 2.16.1, give the normal fluxes at (s) and (r) in terms of the
potentials there. In the magnetic case, Hz = jkT7 and because of the boundary conditions, Eq. 1, these
relations become

-coth(kd) 1
(kd)sinh(kd) jk

-1 -cK
coth(kd) --

sinh(kd) jk

Eis -coth(kd) 1no x sinh(kd)[1 coth(kd)o0Ex inh(kd) coth(kd)

Substitution of the normal flux densities at (r) expressed by Eqs. 3 into Eqs. 2 gives the desired forces

AEC

fz = 2sinh(kd) Re[j(kVs )(kVr) ]

Note that the terms involving products of the individual rotor excitations
imaginary and hence dropped in taking the real part.) Physically, this is
represent the rotor self-field interactions.

Synchronous Interactions: Consider now systems

with the rotor excitations produced by windings or

electrodes that are fixed to the rotor. The co e

z' measures distance from a frame of reference moving X=I
with the velocity U of the rotor, as sketched in Z =Zi
VFi 1. 3 1 Fixed -An movin frame coriae a=e

g. . . . g

related in the figure. Perhaps through slip rings, the

rotor is excited by a current of angular frequency

O in such a way that as viewed from the rotor there

is a current or potential distribution taking the
form of a traveling wave: Fig. 4.

Kr = Kr sin[wrt - k(z' -k(z )] fvr _ r cos[W t - k(z' - 6)]
0 r 0 r

Ut'

(4)

do not contribute. (They are
expected because such terms

Ut -NoTx'

3.1. Rotor and stator reference
frames z' and z.

(5)

On the stator, a similar arrangement of windings or electrodes, with excitations at the angular fre-
quency s, ,give the traveling waves:

Ks = Ks sin [w t - kz] Vs =V Cos [t - kz]

Because z' = z - Ut, Eqs. 5 and 6 can be written in terms of complex amplitudes:

r - e r(W+kU) t j k6
s = _jKr e eW

K = -jKs eJ s t

- _Vr e J (tr+kU) t jk6
0

S= Vs eJs t
0

Substitution of these amplitudes into the respective force relations of Eq. 4 gives forces with
sinusoidal time dependences. The frequencies are in each case ws - Wr - kU. Only if this frequency
is zero will these forces have time-average values. Division of the resulting frequency condition by
k shows that these time-average forces exist because, as viewed from the stator frame of reference, the
velocities of the traveling waves of field induced by stator and rotor sources are equal:

Ws r= U

Usually, the rotor is d-c excited so that Wr = 0 and the phase velocity of the stator traveling wave,
ws/k, is equal to the rotor velocity U. Under the synchronous condition, the substitution of Eqs. 7
into Eqs. 4 gives the forces as functions of the relative spatial phase k6 between traveling waves:

Sec. 4.3
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A 0oK0K AEo(kVa) (kV)
f 2sinh kd-sin k6 f - 2sinhkd sin k6 (9)z 2sinh kd I 2sinh kd

The sketches of the stator and rotor excitations in Part 1 of Table 4.3.1 (at the instant t = 0)
show the relative distributions with 6 -= /4, and hence k6 E 2r(6/A) = 7r/2. According to Eqs. 9, it
is at this spatial phase that the greatest retarding force acts on the rotor. The observation is con-
sistent with what would be expected intuitively for the sketched distributions. Under the synchronous
conditions the relative distribution of stator and rotor field sources is invariant. The stator cur-
rent distribution gives rise to a normal flux density that peaks at the current null. This is the sta-
tor magnetic axis, indicated by the vertical arrow on the stator. This field interacts with the rotor
current to produce the time-average force in the -z direction. Stator and rotor magnetic axes tend to
line up. Similarly, in regions of positive and negative electrode potential there are positive and
negative surface charges (although not exactly in phase with the potential). Thus, the retarding elec-
tric force results from the attraction of neighboring opposite charges. The rotor and stator axes,
denoted by the vertical arrows, also tend to line up.

The classic force(qr torque) phase-angle diagram, the graphical representation of Eqs. 9,
is shown at the top of 4 . 4.3.1. Angles of positive and negative force can respectively give motor
and generator operation. But, operation is generally restricted to the shaded regions because then
a change in relative phase, kS, results in a force that tends to return the rotor to its original angle.

Parts 2 and 3 of Table 4.3.1 illustrate other types of excitations that result in synchronous
interactions. In each of these, the rotor sources are "attached" to the rotor and hence the synchronous
condition of Eq. 8 reduces to ws/k = U. Each has a force with the same dependence on relative phase k6
illustrated by Eqs. 9.

Small machines having permanent magnet rotors are common, but electric analogues having permanent
polarization (Sec. 4.4) are not. By contrast, electric synchronous interactions between traveling waves
of charge and potential are common, whereas, devices making use of a trapped rotor flux are not. The
former, a kinematic model for electron beam devices, will be considered further in Sec. 4.6.

D-C Interactions: The family of magnetic devices called d-c machines has as an electric field
analogue devices of the Van de Graaff type. The configurations shown in Table 4.3.1, Part 1, can also
be used to illustrate this class of devices, provided the sketched current and potential distributions
are understood to be time-varying in amplitude but stationary in space. Currents are supplied to the
rotor windings through brushes and commutator segments in such a way that even though the rotor moves,
the rotor'S relative current distribution is stationary. The stator current distribution is similarly
stationary in space and shifted by the distance 6. The stationary distribution of rotor potential in
the electric analogue is an approximation to the potential associated with charge placed ohn a moving
belt at one fixed location and removed at another. Excitations therefore take the form

Kr =el-jK(t)e j ek = -Ko(t)sin k(z-6) Vr = Re[-V (t)eJk6 e-jkz = -V (t) cos k(z-6)

(10)

Ks = Re[-jKs(t)]e - jk = -Ks(t) sin kz Vs = Re V(t)e-jkz V(t) cos kz

Note that the complex amplitudes multiplying exp(-jkz), now arbitrary functions of time, are as required
to evaluate Eqs. 4. The resulting forces are in fact the same as given by Eqs. 9, provided it is under-
stood that (Ks, Ir) and (VS, Vr) are now arbitrary real functions of time.

The magnetic version of the d-c machine is modeled in Sec. 4.10, while the Van de Graaff machine

is taken up in Sec. 4.14.

Synchronous Interactions with Instantaneously Induced Sources: Common examples of devices that
exploit instantaneously induced magnetization forces on a moving member are variable-reluctance or
salient-pole machines. Electric field members of this family of devices include variable-capacitance
machines. (By contrast with magnetic and electric "induction" interactions, naturally taken up in the
next two chapters, the rotor sources induced by the stator excitations move synchronously with the
material. Geometry rather than a rate process, such as magnetic diffusion or charge relaxation, is
involved.)

Linear or developed salient-pole models are shown in Part 4 of Table 4.3.1. The rotor, which in
the magnetic case is perhaps highly magnetizable magnetically soft iron, has surface saliencies. In
a two-pole rotating machine, the rotor represented by this model (with 2T/k the circumference of the
stator) could be a squashed cylinder protruding toward the stator at two positions and away from it at
two others. The conventional method for finding the magnetic force on the moving member is to use the
energy method of Sec. 3.5 and knowledge of the inductance or capacitance of the stator windings or

Sec. 4.3



current or potential distribution
SX 7

electrodes. Because of the rotor saliency, the stator
terminal relations clearly depend on the rotor posi-
tion, and hence so also does the magnetic or electric
energy storage.

With the objective of fitting this type of in-
teraction into the field point of view, the develop-
ment is in terms of the magnetic interaction. Simili-
tude then makes it possible to apply the results to
the polarization case. In the limit-where the mate-
rial is highly magnetizable, H is excluded from the
rotor so that on the rotor surface the tangential
field vanishes. As a result, the magnetic traction
acts normal to the surface of the rotor. That is, in
a local Cartesian coordinate system on the rotor sur-
face, having the axis n in the normal direction, any
of the stress tensors (Table 3.10.1) evaluated in
free space next to the rotor surface give a traction

T T.n = Tnn

Although not convenient for mathematical derivations, the surface enclosing one periodicity length 2w/k
of the rotor, shown in Fig. 4.3.2, helps in understanding how the magnetic traction gives rise to a net
force on the rotor. The traction acting normal to the surface has a value Tnn = oHn/2 and hence is
positive. No matter what the excitation from the stator winding, it is clear that at positions (i),where
the slope of the stator surface is positive, the magnetic field tends to pull the rotor to the left while
at point (ii) the pull is to the right. It is the spatial phase relationship between the stator current
distribution and the rotor saliencies that makes one or the other of these forces dominant. It is clear,
for example,that if the rotor surface wavelength matched that of the stator current there could be no net
force. The z-directed traction acting at any given point would then be cancelled by that acting at a
point on the rotor surface a half-wavelength away.

In deriving the relation of the excitation and rotor geometry to the net force, the rotor surface
is taken as being at

x = -d + 4(z,t) = -d + Re t e- j (2k)( z - Ut)
(12)

The rotor travels with the linear velocity U = w/k and hence its surface, with wavelength w/k half that
of the stator excitation, moves in synchronism with the traveling wave of stator surface current:

=* ReSe j(wt-kz)+

y

A surface, represented by F(x,y,z,t) = x + d - 4 = 0, has a normal vector

+VF x z zVn= F7 = IVFI

(13)

(14)

As a reminder that this is a familiar relation, the surface might be one of zero potential (F 4 0), with
t the negative of the electric field intensity normalized so that it has unit magnitude. The condition
that there be no tangential field on the rotor surface is then

[Ix ]y = 0 H = -H L at x = -d +y z x az (15)

To match this boundary condition is in general difficult. In this section, it is assumed that 4 is small,
so that Eq. 15 is evaluated approximately (to first order in E) at the "equilibrium" position of the
rotor surface, x = -d. With Hx evaluated at x = -d rather than at x = -d + 5,the right-hand side of
Eq. 15 is already written to first order in C:

(x-dH(x-d)

Hz(x = -d + 5) = Hz(x = -d) + --- (x = -d) (16)

If it is further recognized that because H is irrotational, DHz/ax = Hx/a3z, then to first order in 4,
Eq. 15 becomes a boundary condition to be evaluated at x = -d, defined as the position (r):

Hr = rz az x (17)

Sec. 4.3
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What must be used in evaluating Hý is the zero-order field. This is the field that would be found with
F = 0, with the rotor presenting a planar surface to a gap excited on the stator side by the current
sheet given by Eq. 13. Thus, Eq. 17 takes the form

Hr a [R• t-kz)Reee-2jk(z-Ut)
z 9z x

(18)
a 1 fr j(wt-kz) * -J(Wt-kz) -2jk(z-Ut) * 2jk(-Ut)

Tz 2 x x

Because of the synchronism condition, w = kU, multiplying out this expression gives a term having the
same spatial frequency as the stator current and a term at three times that frequency:

Hrz Re ke t-k) + Re 3 ke 3 j (t )];-kz*k * 3k- A• (19)

Note that this expression takes the form -VT. With the surface S1 of Fig. 4.2.1a taken as contfguous
with the stator, the desired space-average rotor force is

fz = ATz> = A=poH:ReKseej kz) (20)

Note that the terms in Eq. 19 are written in the standard complex form, with the quantity in brackets
the magnetic potential '. The amplitudes at the stator and rotor surfaces (at s and r) are therefore
related by the transfer relation (Eqs. (a) of Table 2.16.1):

fi -coth(kd) 1 K
ox sinh(kd) jk

= jok (21)

Ar -1 coth(kd) I
ox sinh(kd) k

for components with dependence exp[j(wt - kz)] and

oHxs-coth(3kd) sinh(3kd) 0

s=po3k (22)
SHr -1 coth(3kd) y

Sos sinh(3kd) coth(3k 3k

for components with dependence exp 3j(wt - kz). The infinitely permeable material backing the stator
current sheet requires that the third harmonic tangential field at the stator in Eq. 22a vanish.

The normal flux density 0#x in Eq. 20 is a superposition of the components found using Eqs. 21a
and 22a. Because it multiplies 5, H on the right in these expressions need only be evaluated to zero
order in C. Thus, 4Iis given by Eq. 21b with I = 0, and hence 0k= O. The second term in Eq. 19 also
excites a field at the stator surface given by Eq. 22a. But, inserted into Eq. 20, this higher harmonic
gives no space-average contribution and hence can be dropped. Thus, Eq. 20 becomes

/ -okr s *At1 k(t-kz
fz = A iejllpcoth(kd)K + t I-in( Res (23)

1 0 Losinh (kd) -z

The averaging theorem, Eq. 2.15.14, can now be applied to Eq. 23 to obtain the first of these relations:

9 kA -ECkA0= 0 Re (2jCs f o Re Fks2* (24)

4zsinh (kd) L 4sinh2 (kd)

The second expression pertains to the electric configuration of Part 4, Table 4.3.1, and has been obtained

by recognizing that, in terms of the magnetic and electric potentials, the airrgap fields are analogous.
The only difference is that in the magnetic casethe stator magnetic potential is Ks/jk, while in the
electric case, the stator electric potential is VS. Hence, the electric time average force is found
(using the complete analogy discussed at the beginning of Sec. 2.16) by replacing po + E and is jk^Vs
in Eq. 24a to obtain Eq. 24b.

Sec. 4.3



As specific examples having the stator excitations and rotor position when t = 0 shown in Part 4
of Table 4.3.1, let

ý = % cos 2k[Ut - (z - 6)] = Ree 2 jk 6 exp[2jk(Ut - z)] (25)

and

Ks = Ks sin(wt-kz) = Re(-jKs) exp[j(wt-kz)] Vs = Vs cos(wt-kz) = ReV s exp[j(wt-kz)] (26)
0 0 0 0

where 5o , KS and V
s are taken as real. Then, Eqs. 24 take the specific forms

-1ok(K0)2 o
A -Eok(kVs)2 A

f 0 0 sin(2k6) f 0 0 0sin(2k) (27)
z 4sinh2(kd) z 4sinh2(kd)

The dependence of these forces on the spatial phase of stator excitations and rotor position,
sketched in Table 4.3.1, is typical of salient-pole synchronous devices. That (Tz)z has twice the
periodicity in k6, obtained with the rotor excited directly by sources having the same periodicity as
the stator excitations, is a direct consequence of the induced nature of the magnetizdtion or polariza-
tion. Because the surface traction is proportional to the square of the local field 2the same force
is obtained if the rotor is shifted in relative position by 6 = T/k. The [sinh(kd)]- dependence of the
force on the gap dimension d results because the only excitation is on the stator. By contrast with
the synchronous interactions between excited stators and rotors [with (d) dependence sinh(kd)-l], here
there is a round-trip attenuation of the excitation field, first in reaching the rotor surface and then
in being reflected back to the stator.

Of the many configurations in the general family of "salient-pole" devices, two more are shown in
Part 5 of Table 4.3.1. The magnetic case is considered in the problems, while the electric one is
formally the same as if the rotor were perfectly polarizable. Hence it is also described by Eqs. 24b
and 27b.

Practical devices make use of large amplitude saliency. One approach to obtaining an appropriate
model is developed in Secs. 4.12 and 4.13, where the variable capacitance machine is considered in more
detail.

4.4 Surface-Coupled Systems: A Permanent Polarization Synchronous Machine

With field sources modeled by surface charges or surface currents, it is natural to generalize the

approach taken in Sec. 4.3 to the description of a wide class of complex electromechanically kinematic

systems. The technique involves breaking the region of interest into source-free subregions that have

uniform properties and hence can be described by the transfer relations of Sec. 2.16. Sources are then

relegated to boutdaries between subregions and are taken into account in the boundary conditions used to

splice fields together. It is the objective in this section to illustrate the systematic approach that
can be taken with such models by developing the lumped-parameter mechanical and electrical terminal

relations for the rotating machine shown in Fig. 4.4.1.

The rotor consists of a material having polarization density that is uniform and permanent:

St t -ij(e-er)
P= Po[ir cos(e - er) - i sin(e - Or)] = RePo(ir - jie)e (1)

Field coordinates are (r,O) while er(t) is the rotor axis. Thus, the polarization density is

uniform and directed collinear with the rotor axis at the angle Or(t). The region between the rotor

(with radius R) and the stator (radius Ro ) is an air gap. Stator electrodes shown in the figure have

respective potentials +v(t) and are imbedded in a dielectric having permittivity cs. The length of

the device in the z direction,£, is considered large compared to the radial dimensions.

Within the rotor, there is no free charge density. Moreover, because the permanent polarization

is uniform and hence has no divergence, Gauss' law (Eq. 2.3.27) reduces to

V-6 E = 0 (2)

Within the rotor, as well as in the air gap and in the surrounding dielectric of the stator, the fields

are Laplacian. The transfer relations of Sec. 2.16 are directly applicable to describing the bulk fields.

Boundary Conditions: The potential at r = Ro is constrained to be +v(t) on the respective portions
of the stator surface covered by the electrodes. The potential between the electrodes on the dielec-
tric surface at r = Ro is approximated by the continuous linear distribution shown in Fig. 4.4.2.
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Fig. 4.4.1

Cross-sectional view of
permanent polarization
rotating machine.

-r -(r2)-

I v1 8- / .

D and b

(r/2)+8.
li ,--( Mv)- V

Fig. 4.4.2. Distribution of stator potential used to model
the device shown in Fig. 4.4.1.

In Fig. 4.4.1, the notation (a)...(d) is used to denote positions adjacent to interfaces between
regions. (This convention is introduced in Sec. 2.20.) Thus, the potential distribution of Fig. 4.4.2
is both Oa and Ob . In anticipation of the Laplacian solutions used to describe the bulk fields in
cylindrical geometry, the potential of Fig. 4.4.2 is now expanded in a Fourier series (see Sec. 2.15
for a discussion of Fourier series):

a b+ a J -sin(mO )
) b 0 a(t) e I-jmD = 2v(t) sin( sin ( )

m=- m m = m em sin

(odd)

In the following it is assumed that the dielectric surrounding the rotor is of sufficient radius compared
to Ro, that fields decay to zero before reaching the outer surface of the dielectric.

At the rotor air-gap interface the tangential E and hence the potential must be continuous. Thus
the Fourier amplitudes are related by

c = d (2)m m
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In addition, Gauss' law (Eq. 2.10.21a) and Eq. 1 require that

+ dc d r -jO
nE O 0 E = -n. 0 P EoEr- oEE = Re(Poe e (3)

This latter expression relates the Fourier amplitudes by

oc o =d o [ jr -Jr
E --- E 61e + 6e e (4)

o rm o rm 2 1 m lm

where 6nm, Kronecker's delta function, is unity for n = m and is otherwise zero.

Bulk Relations: The transfer relations, Eqs. (a) of Table 2.16.2 with k = 0, are now used to
represent the fields at the boundaries. In the stator dielectric surrounding the electrodes (r > Ro) ,
a + m and R= R while E -+ :

s rm sm 0

In the air gap (Ro > r > R), a + Ro, B + R and E- EO so that

_b
EE
o rm

E c
o rm

0

fm(R,Ro) gm(Ro,R)

gm(R,Ro) fm(Ro ,R)

b
m

m

(6)

Finally, within the rotor (r < R) the relations are used with a = R, $ + 0 and Ec E :

Ed d
E •d = E0 f m(0,R)D (7)o rm

The boundary conditions given by Eqs. 2 and 4 and the bulk relations of Eqs. 5, 6 and 7 comprise six
expressions that can be used to determine the Fourier amplitudes (, , Em, r E E ) with
the driving amplitudes m • given by Eq. 1. The solution for any one of the amplitudes is usually
much easier than this statement makes it seem, but nevertheless it is worthwhile to have the objective
of the model in view before proceeding further.

Torque as a Function of Voltage and Rotor Angle (v,e,): The rotor is enclosed by a surface at the
radial position (c) in the air gap. The method using the Maxwell stress to compute the torque is as
outlined in connection with Eq. 4.2.3. With the fields represented by Fourier series, Eq. 2.15.17
reduces the average of the shear stress over the enclosing surface to a summation on the products of the
Fourier amplitudes:

c 2 o
L c

z \r 6/ o rm R mTz =R(2TrRe)(DEe = 2 mrRC=_0(EoEC m ) (8)

Substitution for 6 Erm from Eq. 6b introduces the stator field, which is given by Eq. 1, and the same
field 4c as already appears in Eq. 8. On physical grounds it is expected that this latter "self-field"
term should not make a contribution. This is indeed the case, because fm is an even function of m so
that terms in mI4I2 cancel out of the sum. The mth term is cancelled by the -mth term. Thus, Eq. 8
reduces to

m=00z= 2R 29m. - og m(R,R O ) (bm)(• ) (9)

c
and all that is required to determine the torque is an evaluation of 4 .m

With this objective, substitution of Eqs. 6b and 7 into Eq. 4 with Eq. 2 used to replace Qd with
Dc gives an expression that can be solved for Oc:m m

P jO -j ogm(RR)b

2c= 6mme-lm m
m o[f (RoR)- f (0,R)] (10)

This expression and Eq. 1 in turn can be used to evaluate the torque, Eq. 9. (Again, because gm and fm
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are even in m, the self-field terms sum to zero):

-4RLgl(R,R o ) sin 
(e

Tz(V,e r ) = fl(Ro,R) - fl(0,R) 8o v(t)P° sin r (11)

In a lumped parameter model for the device, with v(t) and Or(t) functions of time determined by the
external electrical and mechanical constraints, this relation represents the electrical-to-mechanical
coupling. The reciprocal mechanical-to-electrical coupling completes the model.

Electrical Terminal Relations: To describe the electrical terminals, the total charge q on the
respective electrodes is required, again as a function of the terminal variables (v,dr). The charge
on the upper electrode is

o ---8
2 o +-°a ~2o -a -b -jmO

q= ( (E E- Er)R de k E 0 (E8sE - oE )e R0di

or+ 
+o

2 oo

2 -a -b IT2(SE - EEb)sin m( - o ) (12)
0 m• rm rm

The electric flux normal to the outer and inner surfaces of the electrode are computed from Eqs. 5
and 6a, respectively:

Ea - o b = Esf (,R )a f (R,R)b ogm(R~~ R)ic (13)S rm o rm s m 0 om o m - o m

The amplitudes (m4 ) are given in terms of v(t) by Eq. 2, while m is given by Eq. 10. Thus Eq. 13
is evaluated in terms of (v,Or):

q = Csv(t) - ArPo cos 6 (t) (14)

where Cs, the stator self-capacitance, is independent of er and is

4£R +o sin m( - 80) sin mO
Cs c 22 o m 0 sin ) Isfm(-,Ro ) - ofm(RRo)

m
= -

0 m 0

odd Eogm(Ro,R)gm(R,Ro (15)
+fm(Ro,R) - fm(O,R)15)

and Ar is a constant having the units of area

2RRogl(Ro,R)
A = 0g(R 0 cos (16)

r fl(Ro,R) - fl(0,R) o

The required electrical terminal relation is Eq. 14.

For reasons that stem from the approximations made in the field description, the model represented
by Eqs. 11 and 14 is not self;coneistent. At the dielectric air-gap interface between electrodes, the
potential is continuous, but n. 'Diis not. In physical terms, this means that the fields are as though
segmented electrodes existed at r = Ro in these transition regions having the linear potential distribu-
tion of Fig. 4.4.2 and supporting a surface charge that can be computed from Eq. 13. This charge is
not included in Eq. 14 and might for some purposes be ignored. But, if the mechanical and electrical
terminal relations are used as stated, the electromechanical system, which after all does not include
energy dissipating elements, is given a model that does not conserve energy. In fact, once the torque
is known, energy conservation formalisms introduced in Sec. 3.5 not only provide an alternative to com-
puting the electrical terminal relations, but lead to a self-consistent model and a recognition that
Eq. 15 can be considerably simplified.

In terms of lumped parameters, the system can be pictured as having the terminal pairs of
Fig. 4.4.3. The electrical terminal pairs are interconnected so that vI = -v2 = v and by symmetry,

Sec. 4.44.11



q,

v,

+q

V2

e,
(VPo',r)

Fig. 4.4.3. Three-terminal pair lumped Fig. 4.4.4. State space integra-
parameter system representing tion contour.
system of Fig. 4.4.1.

ql = -q2 = q. Thus, the incremental energy conservation equation is

6w = 2v6q - T dOr (17)

Not accessible through the external electrical terminals is the electric energy storage due to the
permanent polarization. In Eq. 17 it is understood that Po is held fixed. Transformation to a hybrid
energy function w"(v,Po,6r) is made by replacing vs(2q) . 6(2qv) - 2q6v and defining w" = 2qv-w, so that

Sw" = 2q6v + r de (18)

This expression is integrated on the state-space contour shown in Fig. 4.4.4. First, with the rotor at
Or = u/2, the polarization is brought up to its final state. Then the voltage is'raised. Finally, with
P and v held fixed, the rotor is turned to the angle 8r of interest. With the rotor at Or = 7/2, the
net charge induced on the upper electrode because of the polarization is zero. Hence, the net charge on
the upper stator electrode is computed from Eq. 13, but with 6oEb determined as if the rotor were not
present. From Eq. 6,

-bbrm = f (0,R )bm (19)

Hence, Eq. 12 gives

4PkR sin m(- - 0 ) sin meo
q = Csv; Cs - 2 mO sin(f)[M fm(,Ro) ofm(0,Ro)] (20)

m=-00 m o
odd

In view of Eqs. 20 and 11, the integration of Eq. 18 on v and then on 6r leads to

1 2 4Rigl(R,R ) sin o1
w" = 2[- Cv ] + 1Ro-R:• ) 0 vP cos 6 (21)2 s fl(RoR) - fl(0,R) eo o r

Finally, because w" = w"(v,P ,er),the required terminal charge follows as

1 aw"
q 2 •- = Cv - AP cos 6 (22)

where
- 2Rigl(R,Ro ) sin 06

A= (23)
r f1 (Ro,R) - f (0,R) o0

and Cs is given by Eq. 20. Simplification of Eq. 15 leads to Eq. 20, but for the reasons discussed,
Eqs. 16 and 23 differ by the factor [sin 00/ 0o]/cos 80. The use of Eqs. 22 and 23 for the electrical
terminal relation has the advantage that the model is then self-consistent in its representation of
energy flow. The same advantage would exist if the energy relations were used to compute the electrical
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torque from the electrical terminal relations. This more conventional technique would make use of Eq. 14
and an integration of Eq. 18 in the sequence, Po, er and v. To carry out the second leg of this integra-
tion without making a contribution requires that symmetry be used to argue that there is no electrical
torque even though the rotor is polarized.

4.5 Constrained-Charge Transfer Relations

For field sources constrained in their relative distribution, the transfer relation approach can
not only be used for sources confined to boundaries, but can also be used to describe interactions with
sQurces distributed through the bulk of a subregion. The objective in this section is to develop the
principles underlying this generalization of the transfer relations for electroquasistatic fields and to
summarize useful relations. The method is extended to certain magnetoquasistatic systems in Sec. 4.7.

In a region having a given net charge density p and uniform permittivity E, Gauss' law.and the
requirement of irrotationality for E (Eqs. 2.3.23a and 2.3.23b) show that the electric potential 4 must
satisfy Poisson's equation:

V2= - (1)E

In solving this linear equation, consider the solution to be a superposition of a homogeneous part 0H
satisfying Laplace's equation and a particular solution Op which, at each point in the volume of
interest, has a Laplacian -p/E:

S= H + DP (2)

It is this latter component that balances the "drive" provided by the charge density when the total
solution 0 is inserted into Eq. 1. By definition

2 - (3)

V2 H = 0 (4)

In the three standard coordinate systems, the particular solution can be written as a superposi-
tion of the same variable-separable solutions used in Sec. 2.16 for the homogeneous solution. Thus,

Re %p(x,t) exp[-j(kyy + kzz)] (Cartesian)

p= Re 0p(r,t) exp[-j(m6 + kz)] (cylindrical) (5)

Re %p(r,t) Pm (cos 6) exp[-jmO] (spherical)

With n used' to denote the normal component at the respective bounding surfaces of the region described
by the transfer relations, the homogeneous transfer relations of Tables 2.16.1, 2.16.2 and 2.16.3
relate the components of the homogeneous part of the solutions evaluated at the respective surfaces.
Thus, in these relations, the substitution is made

4- !a = p - ;aP; V 1 - 1
H P' H P (6)(6)

D =D - D+ =D -Dn nH n nP' n nH n nP

The transfer relations, which take the general form of Eq. 2.17.6, therefore relate the new surface
variables and the particular solution evaluated at the surfaces:

a P 21 22 n nP

Multiplied out, the transfer relations for regions with a bulk distribution of charge are

-A A D h11 12 n1 (8)
[-A A Ba

21 22 n
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where

F AllDP - A12D]
= + (9)

S p A21DnP - A22D p

Associated with the surface variables related by these transfer relations are the bulk distributions of
potential. These are obtained from the distributions of potential for no charge density by again using
the substitutions summarized by Eq. 6. Fr example, in Cartesian coordinates, the potential distribu-
tion is the sum of Eq. 2.16.15 with (0 0,) replaced by (i, - !, P - i) and the particular solution.

Sa) sinh yx _ 8 sinh y(x - A) +
P sinh yA P sinh y (10)

The same substitution generalizes the cylindrical coordinate potentials, Eqs. 2.16.20, 2.16.21 and
2.16.25 as well as those in spherical coordinates, Eq. 2.16.36.

Particular Solutions (Cartesian Coordinates): Any 0p having the form of Eq. 5 can be used in
Eqs. 8 and 9. "Inspection" yields solutions in many cases. However, it is often true that the most
useful solutions belong to a class that can be generated by the procedure now illustrated in Cartesian
coordinates.

Within the planar region (shown in Table 2.16.1) there is a charge distribution that has an arbi-
trary dependence on the transverse coordinate x but the y-z dependence of Eq. 5a for complex amplitude,
Fourier series or Fourier transform representations:

0 -j(k y + k z)
p = Re E pi(t)Hi(x)e y z(11)

i=o

Here, the distribution has been represented as a superposition of modes li(x) having individual complex
amplitudes ýi(t). These as yet to be determined modes are defined such that the particular solution
can be written as a superposition of the same modes:

Gop -t) -j(kyy + kzz)
4p = Re E i(t)Hi(x)e y z (12)

i=0

The same functions are used for both p and 0p because then substitution into Poisson's equation, Eq. 3,
shows that a particular solution has been found, provided that the modes satisfy the Helmholtz
equation:

d211 +
2 zi 2 2 i 2 2

+ = 0;i - k (13)

It follows from Eq. 13 that Hi is a linear combination of sin(vix) and cos(vix). Boundary con-
ditions, selected as a matter of convenience and to give orthogonal modes that can be used to expand
an arbitrary charge distribution in a quickly convergent series, complete the specification of the
modes. For example, the transfer relations, Eqs. 8 and 9, are simplified if

S= ; -E--- = 0 (14)
nP dx nP dx

so these will be used as boundary conditions in solving Eq. 13. It follows that for a layer with a and
8 surfaces at x = A and x = 0, respectively,

Hi = cos 1ix; vi = ; i = 0,1,2,... (15)

From the definition of vi, Eq. 13, the potential and charge-density amplitudes called for in Eqs. 11
and 12 are related by

pi
i 2 2 k(16)E(V. +k + k2

1 y z
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__

The charge-density amplitudes are determined from a given distribution Re p(x,t) exp[-j(kyy + kz)] by
a Fourier analysis. That is, Eq. 11 is multiplied by IHk, integrated from 0 + A, solved for Pk and
k - i:

= I ý(x't)li( ix)dx; i 0 0: Po *MI1 ( ),t)dx
0

(17)

The associated transfer relations, Eqs. 8 and 9 evaluated using Eqs. 12, 15 and 16, with Aij's from
Table 2.16.1, become

1 a
sinh yA x +.

i=O0
coth yA Di xJ

(18)

The potential distribution is given in terms of these amplitudes and the
15 and 16) by Eq. 10. Note that to make use of Eq. 10 the origin of the
with the 8 surface. The equation applies to a region with the 8 surface
is made x + x + a.

Cylindrical Annulus: In cylindrical coordinates, the given charge
solution take the form

00

p = Re E 4 (t)ll (r)e-j (m+kz).
4p = Re 1i(t)H (r)e-j (m+kz)

i-=0

particular solution (Eqs. 12,
x axis need not be coincident
at x = a if the substitution

distribution and particular

(19)

Thus, Poisson's equation, Eq. 1, requires that

1 di 22+ d + ( v
r dr i

2
m
-~) i = 0;
r

2_ Pi 2
2i

EIP

and the potential amplitudes are related to the charge density amplitudes by

-i

i = 2 i 2
e(V + k2

(21)

Boundary conditions used in selecting solutions to Eq. 20 might be selected analogous to those of Eq. 14.
This would simplify the transfer relations, but require solution of a relatively complicated tran-
scendental equation for the vi's. Instead, the particular solution is required to vanish on the outer
surface only and solutions that are singular at the origin are excluded. In cylindrical coordinates
this is sufficient to result in a complete set of orthogonal modes:

(22)p = -E d = 0rP dr a~j

Comparison of Eq. 20 to Eq. 2.16.19 shows that the solutions that are not singular at the origin
are Bessel's functions of first kind and order m:

(23)i = Jm(Vir)

To satisfy the boundary condition, Eq. 22, the Vi's must be roots of

viJ (via) = 0 (24)

In now evaluating the transfer relations, Eqs. 8 and 9, the normal flux density is zero at the a
surface, but otherwise all of the particular solution entries make a contribution:

Sec. 4.5
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I

$a F (,a) Gm(a. ) "Dr 1 (via) + ViGm(a,)JV(Vi8)
1 0 i=E- + E 2 (25)
a i=0 E(V2 + k2)[[(B,a) F (aB) 1 (vB) + vmi(aB)J'(v B)

An important limiting case is 0 + 0 so that the region is a "solid" cylinder. This limit is most con-
veniently taken by first using the limiting form of the transfer relation, Eq. (b)of Table 2.16.2,
which becomes

1a - =F Fm(0,a)D -Dap (26)
P 6 m r rP

Put in the form of Eq. 25, the transfer relation for a solid cylinder is

00 P
Fm(O,a)D + J (a) (27)

i=0 c(vi + k2)

The charge-density amplitudes ýi are evaluated in terms of the given charge distribution by exploiting
the orthogonality of the Hi's.

Orthogonality of Ii's and Evaluation of Source Distributions: The given transverse distribution
of p is used to evaluate the mode amplitudes, Hi(x) or HIi(r) and hence Oi. Because the particular
solutions are in each case a superposition of solutions to the Helmholtz equation, with appropriate
boundary conditions, the eigenmodes Hi are orthogonal. In the Cartesian coordinate cases, this means
that

Sni(Rx)n (vjx)dx= 6ij (28)

This relation is the basis for evaluating the Fourier coefficients, for example Eq. 17. Proof of
orthogonality and determination of the coefficients is possible in this case by direct integration.
But, in the circular geometry, a more powerful method is needed, one based on the properties of
fi(vir) that can be deduced from the differential equation and boundary conditions. The proof of
orthogonality and determination of the normalizing factor is as follows.

Multiply Eq. 20 by rllj and integrate from the origin to the outer radius. The first term can
then be integrated by parts to obtain

dl(vir) a dI (vir) dR (v r) a 2
r1 (vr) dr - r dr dr dr + r(vi - )i dr =0 (29)

o o o r

This expression also holds with i and j reversed. The latter equation, subtracted from Eq. 29, gives

adHa d.a
(V22) ri dr = ri d - rII d- (30)

Thus, it is clear that either for Ii = 0 or dRi/dr = 0 at r = a, the functions Ii and IIj are orthogonal
in the sense that the integral appearing in Eq. 30 vanishes provided i # J.

The value of the integral for i = j is required in evaluating the coefficients in the charge
density expansion, and is deduced by taking the limit where vj vi, or Av + 0 in (vl = Vi + AV)

lj(vr) = j[vir + (Av)r] = I (Vir) + [I! (vr)]rAv (31)

Again, the prime indicates a derivative with respect to the argument (Vjr). Expansion of Eq. 31
to first order in Av shows that in the limit Av - 0,

2 m2 1

rH dr = 6 2 ia)]2 + [1 - ]2 (V a)0 (32)Inobtainingthis result, the fact that i satisfies Bessel's equation, Eq. 20, has again been used to

In obtaining this result, the fact that Hi satisfies Bessel's equation, Eq. 20, has again been used to
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substitute for "'in terms of Hi and II.

An example exploiting the cylindrical constrained-charge transfer relations and orthogonality
relations is developed in Sec. 4.6.

4.6 Kinematics of Traveling-Wave Charged-Particle Devices

Synchronous interactions between a "stator" potential wave and a traveling wave of charge are
abstracted in Part 3 of Table 4.3.1. In the most common practical devices exploiting such electric
interactions, the space-charge wave is itself created by the electromechanical interaction between a
structure potential and a uniformly charged beam. These examples are not "kinematic" in the sense that
the relative distribution of space charge cannot be prescribed. Nevertheless, by representing the inter-
action as though independent control can be obtained over the beam and structure traveling waves, the
energy conversion principles are highlighted. In addition, this section illustrates how the constrained-
charge transfer relations of Sec. 4.5 are put to work. Self-consistent interactions through electrical
stresses will be developed in Chaps. 5 and 8.

In the model shown in Fig. 4.6.1, the space-charge wave has the shape of a circular cylinder of
radius R and charge density

p = -pB cos(wt - kz + k6) = Re ý exp(-jkz); [-pB exp(jk6)] exp(jwt) (1)

where pB is a constant.

Fig. 4.6.1. Regions of positive and negative charge represent concentrations and rarefactions in
the local charge density of an initially uniformly charged beam moving in the z direc-
tion with the velocity U.

In an electron beam device,1 the stream is initially of uniform charge density. But, perhaps ini-
tiated by means of a modulating field introduced upstream, the particles become bunched. The resulting

space charge can be viewed as the superposition of uniform and periodic space-charge components. The
uiform component gives rise to an essentially radial field which tends to spread the beam. (Through the
qv x B force attending any radial motion of the particle, a longitudinal magnetic field is often used to

confine the beam and prevent its spreading. In any case, here the effect of this radial field is con-

sidered negligible.)

In traveling-wave beam devices, the interaction is with a traveling wave of potential on a slow-
wave (perhaps helical) structure, such as that shown schematically in Fig. 4.6.2a. The structure is
designed to propagate an electromagnetic wave with velocity less than that of light, so that it can be in
synchronism with the space-charge wave. For the present purposes, this potential is imposed on a wall
at r = c:

c = V cos(Wt - kz) = ReV jekz; V = V ejW t (2)

In the kinematic model of Fig. 4.6.1, the coupling can either retard or accelerate the beam, depend-

ing on whether operation is akin to a generator or motor (Table 4.3.1). Traveling-wave electron beam

amplifiers and oscillators are generators, in that they convert the steady kinetic energy of the beam to

an a-c electrical output. The result of the interaction is a time-average retarding force that tends

Secs. 4.5 & 4.6

1. Basic electron beam electromechanics are discussed in the text Field and Wave Electrodynamics, by
Curtis C. Johnson, McGraw-Hill Book Company, New York, 1965, p. 275.
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Fig. 4.6.2. (a) Schematic representation of traveling-wave electron beam device with slow-wave struc-

ture modeled by distributed circuit coupled to beam through the electric field. Below struc-
ture is distribution of space charge in the beam (A), and the equivalent distribution of a uni-
form charge density (B) and a periodic distribution (C). (b) Combination cutaway and phantom
view of low-noise low-power traveling-wave tube that operates in part of the frequency range
2 to 40 GHz. (c) Schematic of linear accelerator designed so that oscillating gap
voltages "kick" particles as they pass. Shown below are "bunches" of particles and hence
space charge (A) and the equivalent superposition of periodic and uniform parts (B) and (C).
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to slow the beam.

The "motor" of particle beam devices is the particle accelerator typified by Fig. 4.6.2c. Here,
the object is to accelerate bunches of particles to extremely high velocities by subjecting them to
alternating electric fields phased in such a way that when a bunch arrives at an accelerating gap, the
fields tend to give it an additional "kick" in the axial direction.2 The complex fields associated with
the traveling particle bunches and accelerating fields are typically represented as traveling waves, as
suggested by Fig. 4.6.2c. The principal periodic component of the space-charge wave is represented in
the model of Fig. 4.6.1.

In this section it is presumed that the particle velocities are unaffected by the interaction; U is
a constant. In fact, the object of the generator is to slow the beam, and of the accelerator is to in-
crease the velocity; a more refined analysis is likely to be required for particular design purposes.

In yet another physical situation, the constraints on mechanical motion and wall potentials assumed
in this section are imposed. At low frequencies and velocities, it is possible to deposit charge on a
moving insulating material. Then, the relative charge velocity is known. Moreover, at low frequencies
it is possible to use segmented electrodes and voltage sources to impose the postulated potential dis-
tribution.

As will be seen, at low velocities it is difficult to achieve competitive energy conversion den-
sities using macroscopic electric fordes. So, at low frequencies, the class of devices discussed in
this section might be used as high-voltage generators rather than as generators of bulk power.

The net force on a section of the beam having length k is found by integrating the stress over a
surface adjacent to the outer wall (see Fig. 4.2.1b for detailed discussion of this step):

fz = 2ra<ADcEcC =f rwaRelz()* jkVo] (3)
z

To compute Dc, and hence f , the potential is related to the normal electric flux and charge density by
the transfer relation for a "solid" cylinder of charge, Eq. 4.5.27 with m = 0:

-a 1 a (0 iJo( ia)
SF(0,a) r + 2 (4)
0o ri= E (v i +

Table 2.16.2 summarizes Fo(0,a ) .

Single-Region Model: It is instructive to consider two alternative ways of representing the fields.
First, consider that the beam and the surrounding annular region comprise a single region with a charge
density distribution as sketched in Fig. 4.6.3. Then, in Eq. 4, the radius a = a and the position
(a)+ (c). Multiplication of Eq. 4.5.19a by r1lj(vjr) and integration 0 + a then gives

R 0
Io rJ o ( v r)dr = E i i rJo (Vir)J (v r)dr (5)

oi=0

Fig. 4.6.3

Radial distribution of charge
density.

The right-hand side is integrated using Eq. 4.5.32, while the left-hand side is an integral that can be
evaluated from tables or by using the fact that Jo(vir) satisfies Eq. 4.5.20 with m - 0 and Eq. 2.16.26c
holds for Jo:

R a2 2 1RJ (viR)
S 1 R) -2 o Via Jo(via); i 0 (6)

2. A discussion of synchronous-type particle accelerators is given in Handbook of Physics, E. U. Condon

and H. Odishaw, eds., McGraw-Hill Book Company, New York, 1958, pp. 9-156.
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The root vi = 0 to Eq. 4.5.24 is handled separately in integrating Eq. 5. In that case Jo = 1 and o =
R2ý/a2.

Because ýc = V,'Eq. 4 can now be solved for Dc;r

-1
D = F (,a)
r 0 o

L(ak)2

00 2RJ (ViR)
+2 2 2

i=l svia (V + k )J (V a)
1 1 0 1~

It follows from Eq. (3) that, for the distribution of charge and structure potential given by Eqs. 1 and
2, the required force on a length £ of the beam is

fz= -(TR 2 £)(kVo B sin k6)L 1

where

S1 2J1 [(via) a-]

1 R 2 + 2 2
(ak) i=l (vja)[(v.a) + (ak) ]J (va)

aF (O,a)
0F-

Hence, the force has the characteristic dependence on the spatial phase shift between structure potential

and beam space-charge waves identified for synchronous interactions in Sec. 4.3.

Two-Region Model: Consider next the alternative description. The region is divided into a part
having radius R and described by Eq. 4 (with the position a - e and radius a + R) and an annulus of
free space. Because the charge density is uniform over the inner region, only the i = 0 term (having
the eigenvalue ,o= 0) in the series of Eq. 4.5.1 is required to exactly describe the charge and
potential distributions. With variables labeled in accordance with Fig. 4.6.1, Eq. 4 becomes

DeF (0,R) +
+

Ek

The annular region of free space is described by Eqs. (a) of Table 2.16.2:

(R,a) g (a,R)1 c

(R,a) fo(a,R) [d

(10)

Boundary conditions splice the regions together:

~c ~o d e d ~e
c = V r= e, D = D

o9 r r
(11)

In view of these conditions, Eqs. 9 and 10b combine to show that

-1R- -1 -2
d go(R,a)Vo + Fo (0,R)E k

-1
F (0,R) - f (a,R)
0 0

From Eq. 10a bc can be found and the force, Eq. 3, evaluated. The result is the same as

that L1 is replaced by

L 2
2 ~

-1
[ag o (a,R)][aFo (0,R)]

2 ( 2 -1
(ka) () [aF (O,R) - af (a,R)]a 0o

I (kR)

0

(12)

Eq. 8 except

(13)

To obtain the second expression, note that the reciprocity condition, Eq. 2.17.10, requires that

ago(a,R) = -Rgo(R,a).

Numerically, Eqs. 8 and 13 are the same. They are identical in form in the limit where the charge

completely fills the region r<a, as can be seen by taking the limit R + a in each expression

-1
aF (0,a)

L L o
SL2 (ak)2

Sec. 4.6
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In the example considered here the second repre-
sentation gives the simpler result. But, if
the splicing approach exemplified by Eq. 13 were
used to represent a more complicated radial dis-
tribution of charge,, the clear advantage would
be with the single region representation illus-
trated by Eq. 8.

The dependence of L2 on the wavenumber
normalized to the wall radius is shown in
Fig. 4.6.4. As would be expected, the coupling
to the wall becomes weaker with increasing k
(decreasing wavelength). The part of the
coupling represented by L2 also becomes smaller
as the beam becomes more confined to the center.
Note however that there is an R2 factor in
Eq. 8 that makes the effect of decreasing R L 2

much stronger than reflected in L2 (or L1 )
alone.

4.7 Smooth Air-Gap Synchronous Machine Model

A specific result in this section is the
terminal relations that constitute the lumped-
parameter model for a three-phase two-pole
smooth air-gap synchronous machine. The deriva-
tions are aimed at exemplifying the pattern that
can be followed in describing a wide class of ka----
magnetic field devices modeled by coupling at
surfaces.

In the cross-sectional view of the smooth Fig. 4.6.4. Function L2 defined by Eq. 4.6.8.
air-gap machine shown in Fig. 4.7.1a, the stator
structure consists of a laminated circular cylindrical material having permeability 11s with outside
radius a and inner radius b. Imbedded in slots on this inner surface are three windings, having turns
densities that vary sinusoidally with 0. These slots are typically as shown in Fig. 4.7.2b, where the
laminations used for construction of rotor and stator for the generator of Fig. 4.7.2a are pictured.
Only one of these stator windings is shown in Fig. 4.7.1, the "a" phase with its magnetic axis at e =
-900. The "b" and "c" phases are similarly distributed but rotated so that their magnetic axes are
respectively at the angles 300 and 1500. Thus the peak surface current density for the respective
windings comes at the angles e = 0, 8 = 1200, and 8 = 2400. These stator windings have peak turns
densities Na, Nb, Nc, respectively, and carry the terminal currents (ia, ib, ic). Because the stator
windings essentially form a current sheet at the radius b, their contribution to the field is modeled
by the surface current density

27r 41T
Ks = ia(t)Na cos + ib(t)Nb cos(e - 2) + ic(t)Nc cos(8 - -)

3 (1)

aaa b b c c= Re Kse ; KS= iaNa bNbe + icNe

There is only one phase on the rotor, consisting of sinusoidally distributed windings of peak turns
density Nr excited through slip rings by the terminal current ir . With the rotor angular position

denoted by er, the rotor current is modeled by a surface current density at r = c of

r - rre r
K = i (t)Nr cos(0 - 8r) = Re Kre ; K = i Ner (2)

These excitations have been written in the complex amplitude notation. Fields in each region are

described by the polar coordinate transfer relations of Table 2.19.1 with m = 1.

The objective in the following calculations is to relate the electrical and mechanical terminal

relations so that electromechanical coupling, represented schematically in Fig. 4.7.3, is specified in

the form

[Xa] L L L iX
a 

L
a 

Lab Lac Lar a

b ba bb bc br b (3)

c ca cb cc cr c

S L ra rb rc rr r

T= (i .i..i.i . ) (4)
Z Z a b c r rr 4.21



I
I
I

11"/2- 11"/2

a-phase axis

8r

(a) (b)

Fig. 4.7.1. (a) Cross-sectional view of smooth air-gap synchronous machine showing only
one of three phases on stator. (b) Distribution of "a"-phase windings on
stator as seen looking radially inward.

(a) (b)
,/ ~~
~ Fig. 4.7.2. (a) Model synchronous alternat~ having rating of about one kVA and modeling 900 MVA

machine. Unit is one of several used in MIT Electric Power Systems Engineering Laboratory as
part of model power system. Slip rings for supplying field current are on shaft near bearing.
Disk with holes is for measurement of angular position of rotor. (b) Rotor and stator lamina
tions used for model machine of (a). Rectangular slots carry windings. Conducting rods in
serted through the circular holes in the rotor are shorted at the ends of the rotor to simulate
transient eddy-current (induction machine) effects in full-scale machine. The scaling requires
that the model have extremely narrow air gap of about 0.23 mm, as compared to the gap of about
7 cm in the full-~cale machine.
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Boundary Conditions: The field excitations represented by Eqs. I
and 2, written in complex-amplitude notation, can be matched by single +
components of the fields represented in each region by the polar co- X,
ordinate transfer relations of Table 2.19.1. In view of the 8 depend-
ence of the current sheets, m = 1.

Positions adjacent to the boundaries between current-free regions Xb
of uniform permeability in Fig. 4.7.1a are denoted by (d) - (i). Fields
are assumed to vanish far from the outer surface. At each surface, the
normal flux density is continuous (Eq. 2.10.22). This means that the X,
vector potential is continuous, and hence

Ir---

d e +
= e (5) X,

Af = xg (6)

__7

-h -i Fig. 4.7.3. Electromechanical
coupling network for

The jump in the tangential field intensity is equal to the surface cur- system of Fig. 4.7.1.

rent density (Eq. 2.10.21), and hence

Rd e =0 (8)

~f ~ ~
H - = KS (9)6 e
~h ~i ~r
H - H = K (10)

Bulk Relations: Each of the uniform regions is described by Eq. (c) of Table 2.19.1. In the
exterior region, a + 0, 8 = a, and p = po

H = f(-,a) (11)oe 1

In the stator, a = a, 8 = b, and p = ps

1 1 (b,a) g1 (a,b) Ae1=[J (12)
H s gl(ba) fl(a,b) A

In the air gap, a = b, 8 = c, and i = o:

H 1 1f(c,b) gl(b,c) 1 (13)
(13)

Hh 10 9gl(c,b) fl(b,c) A

and finally, in the rotor, a = c, -+ 0, and p = r:

i 1 i
H = f1 (0,c)A (14)

r

Torque as a Function of Terminal Currents and Rotor Angle: With the surface of integration for
the stress tensor just inside the stator, it follows from Eq. 4.2.3 that the rotor torque is

Tz = (27rb 2 k) 1 Re (H ) B = rb2iRe[ (bH)*1-) (15)

It will be seen shortly that the electrical terminal relations can be computed from Ag. It is there-
fore convenient to also express Eq. 15 in terms of Ag and the given surface currents. To this end,
Eqs. 5 and 8 are used to replace (d) - (e) in Eq. 11, while Eqs. 6 and 9 are used to replace Hq and A1

in Eq. 12b. Thus, Eqs. 12 can be solved for H as a function of Ks and Ag:

g s Ag gl(b,a)gl(a,b)
= -k + - fl(a,b) + . . -b (16)

ePp1 f1 (-,a) - fl(ba)

4.23 
Sec 4.
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Because the geometric quantity multiplying Ag is real, it is clear that substitution of Eq. 16 into
Eq. 15 gives only

T = vbkRe[(KS) *jA
g ]

To evaluate Ag in terms of
and 10 are used in Eq. 14, which
Simultaneous solution of Eqs. 13

Krgl(b,c)

fl .(b,c) - - fl(0,c)
r

(17)

K and K (and hence in terms of the terminal currents and Or), Eqs. 7
is solved for Hh. This latter quantity is substituted into Eq. 13b.
then gives a second expression for Hg:

gl(b,c)gl(c,b)

fl(cb) +
]o
L fl ( 0,c ) - fl(b,c)

r

By equating Eqs. 16 and 18, it is now possible to solve for Ag in terms of the surface currents:

(18)

A - K +
D

Pog 1 (b,c)

D[fl(b,c) - f l (0,c)]
r·I

(19)

A methodical approach to solving the boundary and bulk
with the reduction of determinants or inclined to use matrix

the boundary conditions, Eqs. 5 to 10, are used to eliminate

bulk relations, Eqs.

D (ab) + gl(b,a)gl(a,b) I1 + gl(b,c)gl(c,b)

i 1 ( , a ) - fl(b,a fl(0,c) - fl(b,c

L0 ý1-rI-

11 to 14. These latter equations are then written in the form

relations is suited to those comfortable
computations. Following this alternative,

the "d", "f", and "i" variables in the

-1 fl(,a )

-1 -1 fl(b,a)

S1-0 1 (b,a)Ps

0 0

0 - gl(a,b)

-1 1- f1 (a,b)
s

-1 fl(c,b)
0o

0- l(c,b)

0 0

1
-0 - f1 (b,c)

-1 f (0,c)- r]d

Cramer's rule is then used to deduce Ag, Eq. 19.

Substitution of Eq. 19 into the torque expression, Eq. 17, shows that

7rbp o0

]1
o

D[fl(b,c) - - fl(0,c)]
r

Re[jKr(Ks) * ]

It follows from Eqs. 1 and 2 that the torque, expressed in terms of the terminal currents, is

T =

-Tb9og1 (b,c)

1o
D[fl(b,c) - ý- f1 (0,c)]

r

irN [iN a sin r + ibN sin(0 - )
r+r aia r bb r - 31

+ iN sin(e - 4Tr)]
cc r 3

Sec. 4.7

where

AeH0

e

0

0

KS

0

0

_Kr

(20)

z =z
(21)

(22)
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Electrical Terminal Relations: The flux linked by one turn of the "a"-phase coil running in the +z
direction at e = 6' and returning in the -z direction at e = 6' + T is

( = £[A(b,O') - A(b,O' + 7)] = ReAg[e - j O - e - j ( l ] (23)

Here, use has been made of the relation between the vector potential and the flux, as described in
Sec. 2.18 (Eq. (f) of Table 2.18.1).

The flux linked by the turns in the azimuthal interval bdO' is then (x(bde'N cos 6'), and the
total flux linked by the "a" phase is

Tr/2

X = -bkN Re - [ej + e j ]1•g[JjT -
a - a -/2 2 l]e-je6 'd' = ZbN fReA

g

a

Substitution of Ag from Eq. 19 and the surface currents from Eqs. 1 and 2 then gives the terminal relation
for the "a" phase, in the form of Eq. 3a, where

L = a L
aa D 'ab

rkbioNaN
b

2D Lac
oac L = L bNN cos

2D ' ar o a r r

L
o

(25)
11

D[fl(b,c) - ~ f 1 (0,c)]
r-I

By symmetry, the inductances for the "b" and "c" phases are obtained without carrying out the evaluation
by simply replacing indices in Eq. 25. For the "b" phase, replace indices a - b, b - c, c + a, and 6r,
Or - 2rr/3 and for the "c" phase, a - c, b + a, c + b, and Or + er - 47r/3.

The remaining flux linkage, Xr, is computed by first recognizing that the flux linked by one turn
on the rotor winding running in the z direction at e' and returning at 6' + Tris

SX = -ReAh[ej - l]e-J ' (26)

Hence, the total flux linking the rotor winding is

er +

S=I +
0r

h je r
N cos(O' - 0 )4 cd0' = N cZRReA e
r r X r

(27)

The vector potential amplitude required to evaluate this expression follows from Eqs. 7, 10, 13b, and 14:

g1 (c,b)Ag - • K r
A=

r fl(0,c) - fl(b,c)

where Ag is again Eq. 19, and the surface currents are evaluated in terms of the
Eqs. 1 and 2. Thus, with the use of the transfer function reciprocity relation,
Eq. 2.17.10,

(28)

terminal currents using
cgl(c,b) = -bgl(b,c),

2Lr 4Lr
L = LobN N cos 0 , Lrb = L bNrNb cos(0 2-), L = L bN N cos(r -2ra o r a r rb 0 rb r -3 rc o r c r 2t_

L = LorbN
rr o r

g1 (b,c)

D[fl(bc)
D[f 1(b,c) - - f1(0,c)0

Energy Conservation: Because the electromechanical coupling network represented by Fig. 4.7.3 is
conservative, there is considerable redundancy in the terminal relations that have been derived. Con-
servation of energy requires that (Eq. 3.5.7 applied to a magnetic system)

Sec. 4.7

(24)

1 ,b

91(cb) I

(29)

rP ogl (b,c)
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6w' = Xa61a + Xb6ib + AX6ic + Xr6ir + T6 r (30)

From the assumption that w' is a state function, it follows that (see Eq. 3.5.4)

aw' 3w'
Ak = ; k = a,b,c,r; Tz (31)

k r

Lumped-parameter reciprocity conditions are generated by taking cross-derivatives of these relations:

ak x£ aTz aA k = a,b,c,r

a r = a,b,c,r

The four relations among the electrical terminal variables show that

Lkk = L£k (33)

and these conditions are met by the results summarized by Eqs. 25 and the subsequent substitution of
indices and Eq. 29. The reciprocity conditions between the torque and the flux linkages, Eq. 32, is
also satisfied by Eqs. 22 and Eqs. 25 and 29. Note that to make it clear that the lumped-parameter
reciprocity relations are satisfied, the reciprocity condition for the air-gap transfer relations was
used in writing Eq. 29.

4.8 Constrained-Current Magnetoquasistatic Transfer Relations

By way of exemplifying how transfer relations can be used to represent fields in bulk regions,
including volume distributions of known current density, these relations are derived in this section
for one important class of physical situations. The current density (which is typically the result
of exciting distributions of wire) is z-directed, while the magnetic field is in the (r,8) plane.
Thus, the relations are directly applicable to rotating machines with negligible end effects. Such
an application is taken up in the next section.

In a broad sense, the objective in this section is to magnetic field systems what the objective
in Sec. 4.5 was to electric field systems. But, the solution of the vector Poisson's equation,
Eq. 2.19.2, is more demanding than the scalar Poisson's equation, Eq. 4.5.1, and hence the technique
now illustrated is limited to certain configurations in which only one component of the vector poten-
tial describes the fields. Such cases are discussed in Sec. 2.18 and the associated transfer rela-
tions for a region of free space are derived in Sec. 2.19. The following discussion relates to the
polar-coordinate situations of Tables 2.18.1 and 2.19.1.

In the two-dimensional cylindrical coordinates, the vector Poisson's equation (Eq. 2.19.2) has
only a z component and the Laplacian is the same as the scalar Laplacian:

V2 A = -pJz (1)

Following the line of attack used in Sec. 4.5, the solution is divided into homogeneous and particular
parts,

A - AH + Ap (2)

defined such that

2A- -Jz; 2H = 0 (3)

The imposed current is now represented in the complex amplitude form

Jz = ReJ(r,t)e-jm6 (4)

Of course, by superposition, such solutions could be the basis for a Fourier representation of an arbi-
trary current distribution. Substitution of Eq. 4 into Eq. 3 shows that A must satisfy the equation

P

2-2
d2 1 dAP m22+ r 2 AP=-Iii(r) (5)

dr2 r dr r -Jr) (5)

dr r

The particular solution can be any solution to Eq. 5. The magnetic field associated with this particular
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solution is, by the definition of the vector potential (Eq. 2.18.1),

HP = dr r;BdrP r1

From Eq. 2 it follows that the homogeneous solution is the total solution with the particular solu-
tion subtracted off. That is,

4AH A - ; HOH = HO - Hp

The homogeneous parts are related by the transfer relations, Eqs. (d) of Table 2.19.1, so that substi-
tution from Eq. 7 shows that[F(O,a)

G(B,c~)

G.m(a,) _H'J ep
E~oBJ Ia - 0

These relations, multiplied out, are the transfer relations for the cylindrical annulus supporting a
given distribution of z-directed current density:

Fm(B,,) Gm(a,O)

Gj8Oca) Fm(aa)

GFm (B,) Gm(a,B )
H P
Hep

Following the format used in Sec. 4.5, it would be natural to now proceed to generate particular
solutions that form a complete set of orthogonal functions which are solutions to the Helmholtz equa-
tion. Such an approach to evaluating the particular solutions in Eq. 9 is required if an arbitrary
radial distribution of current density is to be represented. The approach parallels that presented in
Sec. 4.5.

In important physical configurations, to which the remainder of this section is
distribution is uniform:

3(r) = 3

Fortunately, inspection of Eq. 5 in this case yields simple particular solutions:

confined, the radial

(10)

m#2

(11)
1 2

- r In r; m = +2
4

Thus, for the case of a radially uniform current density distribution, substitution of
yields the transfer relations

Eq. 11 into Eq. 9

wA J(L 
,a)

where

m JdL 9

Fm(ac,B)J[ + Ij l

1 [x 2 + 2 xFm(y,x) + 2 yGm(x,y)]; m # 2
m - 4h (x,y). n m +2
-[z+m(xy)y 2In •1 ; m +2

Sec. 4.8

a -a

2r

m2 _ 4AP=I

(12)
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and the functions Fm, Gm, and gm are defined in Table 2.16.2 with k = 0.

The radial distribution of A within the volume of the annular region described by Eg. 12 is ob-
tained by adding to the homogeneous solution, which is Eq. 2.19.5 with A A - Ap, and A + A - 8,
the particular solution Ap:

A (A a+(A r)- (13)

For Eq. 12, the particular solution is given by Eq. 11, so the associated volume distribution is evalu-
ated using Eq. 11.

The constrained-current transfer relations are applied to a specific problem in the next section.

4.9 Exposed Winding Synchronous Machine Model

The structure shown in cross section in Fig. 4.9.1 consists of a stator supporting three windings
(a,b,c) and a rotor with a single winding (r). It models a three-phase two-pole synchronous alternator,
and is similar to the configuration taken up in Sec. 4.7. The difference is that the windings on both
rotor and stator are not embedded in slots of highly permeable material and take up a radial thickness
that is appreciable compared to the air gap. As a result, the surface current model used in Sec. 4.7
is not appropriate.

The configuration considered here is an example to which the constrained-current transfer rela-
tions of Sec. 4.8 can be applied. It closely resembles models that have been developed for synchronous
alternators making use of superconducting field (rotor) windings.1 With superconductors, it is possible
to generate magnetic fields that more than saturate magnetizable materials. As a result, the magnetic
materials in which conductors are embedded in conventional machines can be dispensed with. This makes
it possible to design for greater voltages than would be possible in a conventional machine, where the
slot material in which a conductor is embedded must be grounded. But, because the conductors are
exposed to the full magnetic force, methods of construction must be radically altered. A machine built

Fig. 4.9.1.

Cross section of synchro-
nous machine model typi-
fying structure used in
superconducting field
alternator.

1. J. L. Kirtley, Jr., "Design and Construction of an Armature for an Ajternator with a Superconducting
Field Winding," Ph.D. Thesis, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1971; J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large
Superconducting Alternators," IEEE Power Engineering Society, Winter Meeting, New York, Jan. 1975.

Secs. 4.8 & 4.9 4.28



Fig. 4.9.2. Cross section of superconducting field alternator projected in design
for 1000 and 10,000 MVA machines on basis of M.I.T. experiments on 2-3 MVA.1
Not included in model of this section is conducting shell between rotor and
stator to help prevent time-varying fields due to transients from reaching
superconductors. Also, magnetic core of rotor used to simplify model in this
section is not present in machine shown. Phenolic materials are used in
projected design to construct stator and rotor.

to test approaches to constructing a rotating "refrigerator" required if the field is to be superconduc-
ting is shown in Fig. 4.9.2.

In the configuration considered here, it is assumed that surrounding the stator is a highly per-
meable shield material with inner radius (a) equal to the outer radius of the stator windings. Simi-
larly, the rotor windings are bounded from inside by a "perfectly" permeable core. The magnetic mate-

rials are introduced into the model to make the example reasonably free of algebraic complications.
In a machine having a superconducting field, a magnetic core would not be used. Development of a
model without the magnetic rotor core follows the same pattern as now described.

In i

iana ibrb Icnc

es LJ
S_ I

Of.
Irnr

Fig. 4.9.3

Azimuthal current
density distribu-
tion on stator
and rotor.

0Z

I I

The distribution of stator and rotor current densities with azimuthal position is shown in
Fig. 4.9.3. The turns densities (na,nb,nc,nr) (conductors per unit area) respectively carry the
terminal currents (ia,ibicir). The conductors are unformly distributed. Hence, these current
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density distributions can be represented by the Fourier series

+mo

Js J=~ s e-jmz m
m=-_o

b < r < a; Jr jr e-jme,z m
m=-_o

For the stator winding, the Fourier amplitudes are (Sec. 2.15)

2 s
ein sin () in a + ibnbeS e 2 aia beae

while on the rotor the amplitudes are

mef2
2 sin

~r 7Tm
J m

0

( 2 )irnre

jmJT

+ ine
cc

;m odd

;m even

The constrained-current distribution is now as assumed in the previous section, Eqs. 4.8.4 and 4.8.10.
The associated transfer relations relate the Fourier amplitudes of the tangential magnetic field in-
tensities and vector potentials at the surfaces of the annular regions comprising the stator, the air
gap and the rotor winding with designations (d) - (j) shown in Fig. 4.9.1.

Boundary Conditions: There are no surface currents in the model, so the tangential magnetic fields
are continuous between regions and vanish on the stator and rotor magnetic materials. The normal flux
density is continuous, and this requires that the vector potential be continuous:

-d 0 e ~f ~ -h -i
em=m Om; Hm m, m 0m

le -=Af; g = Ah 
(4)

m m m m

Bulk Relations: The transfer relations, Eq. 4.8.12, are now applied in succession to the stator,
the air gap and the rotor regions. In writing these expressions, the conditions of Eq. 4 are used to
eliminate (e,h) variables in favor of the (f,g) variables:

~d
A = omG (a ,b)m + Ish (a,b)m 0omm

0 1 Gm(b,c)Om

U F (b.c)
0 m

om (dc)

-I0Jsh (b,a)

0

0

--P rh (c,d)
oinm

i = -r
m = oCG (dc) + oJ h (d,c)m om em omm

Because the boundary conditions on the magnetic materials uncouple them from
first and last of these relations are written separately.

Torque as a Function of Terminal Variables: The torque is computed by
stress over the surface at (g) on the rotor side of the air gap (sec. 4.2).
the torque becomes (Eqs. 4.2.3 and 2.15.17):

T = 2r2ec2 n- g ~g *z -c m9 mm=_CO

the other relations, the

integrating the Maxwell
Because Br = (l/r)(aA/a6),

(6)

To evaluate this expression, the amplitudes g and 9 are found from the matrix equation of Eq. 5,
using Cramer's rule: m

g =J 5JC + JrC
m 1 m 2 (7)

H~ = JC +JrCem m3 m4

Sec. 4.9

d<r<c

jm2r 1

m odd

m even

01.
-1

0

0·

oFm(a,b)

SFm (c,b)

OGm(c,b)

0

q
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where
3

1o
C1 = $-hm(b,a)Gm(cb)Fm(d,c)

3

C - h (c,d)[F (a,b)F (b,c) - F(cb)F (b,c) + G(c,b)G (b,c)

2

C3 =- h (b,a)G (cb)

2

C4 - hm(c,d)[Fm(a,b) - Fm(c,b)]

D = 2 {Gm(c,b)Gm(b,c) - [Fm(c,b) - F (a,b)][F (b,c) - Fm(d,c)l}

In using Eqs. 7 to evaluate Eq. 6, observe that J5s(ts and r(ir)* are even in m, as are also the
functions hm, Fm, and Gm . Because of the latter,mthm Ci's are also even in m. Thus, the summations
of the self-field terms in Jjsj2 and 1Ir12 are odd functions of m and result in no contribution. Themthtermsarecanceledbythe-mth terms
mth terms are canceled by the -mth terms. Only the cross terms appear, as Eq. 6 becomes

T = 27re E (-jm)[J )(C 2C 3+ j j+ ) C1 C 4r

Substitution of Eqs. 2 and 3 therefore gives the torque as

16kc m
z R7 rnr 1m=1

(C2 C3 - C1C 4 )
1

mO
sin (2
sin (--)

me
sin (-~ )[ianasin m r

+ ibb sin m(Or -) + icnc sin m(er - 21
c c r 3

Shm (c,d)hm(b,a)Gm(c,b)[F (a,b)F (b,c) - F (c,b)F (b,c)
+ (,b)m(bc) + ,b) - (d,) ,b)

+ Gm(c,b)Gm(b,c) + Fm(d,c)Fm(c,b) - Fm(d,c)Fm(a,b)]

Electrical Terminal Relations: Each of the three phase windings of the stator,
rotor winding, can be represented by the coil shown cross-sectionally in Fig. 4.9.4.
phase of the stator, variables are identified as 61 = s/2,62 = -8s/2,a = a, 8 = b.
81 = 0r + 6f/ 2 ,e2 = er - 8f/ 2, a = c, B = d.

as well as the
For the "a"

For the rotor,

Fig. 4.9.4

Prototype coil representing each
of the four in Fig. 4.9.1.

The flux linked by

returning it at (r',0' +
table 2.18.1):

a single turn of the coil carrying current in the z direction at (r',6') and
u) is conveniently evaluated in terms of the vector potential (Eq. (f) of

0 = 2[A(r',8') - A(r',O' - wr)]

Sec. 4.9

(odd)

where

(C2 C3 - C1 C4 )

(10)

... .. • . . . •
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With n defined as the turns per unit cross-sectional area, there are nr'de'dr' turns in a differential
area and hence the total flux linked by the coil is

ral61 +~ ~ -)e" -jm(0'-i)
SE [Am(r')e-me' - m(r')-e - ]nr'd'dr'

0 02 m=-m

The integration on 8' can be carried out directly to reduce Eq. 11 to

(11)

+00 (e-jml_1 e-jm82)
X = 2jin E mm

A (r')r'dr'm

To complete the radial integration, Eq. 4.8.13 is used to express Am, while for the case
A is given by Eq. 4.8.11:

+0 (e-jme1 - jme2
S= 2j [- Mmm(a,B) - mMB (,a) -mo Sm(a, ) ]

odd

where

being considered,

(13)

M1(x,y) x22 hm(x,y)]

2 2 4 4

m2 m m2-4 m2 4 m•2_4-

Sm(x,y) = 1 2 1 2 x4 1 y4 1-x n (x,y) + y n yMm(y,x) + [x n x - (in y - -)], m +2

By appropriate identification of variables, Eq. 13 can now be used to compute the flux linked by each
of the four electrical terminal pairs. The procedure is illustrated by considering the field winding.
Then, variables are identified:

of
X = Xr, d - c, 8 4 d, 01 = er •

r 1 r 2E
f rign i r

,2 = r + T' n = nrP +Ag, B+ 1, =Vm

The amplitudes (Ag,•i) are respectively evaluated from Eqs. 7a and the combination of Eqs. 5f and 7b.
Thus, identified with the field winding, Eq. 13 becomes

1 f -Jmer sXr = -on r4 - sin f(-e r m[ClMm(a,$) - WoG (d,c)C3Mm(8,))]

odd

+ ar[C2Mm(a,O) - oGm(d,c)C4Mm(B,a) + 1PMm(0,a)hm(d,c) - poSm(a,B)] (15)

The current density amplitudes are in turn related to the terminal currents by Eqs. 2 and 3. Thus,
Eq. 15 is expressed in terms of three mutual inductances and a self-inductance, in the form of Eq. 4.7.3d.
In writing these inductances, observe that F and G are even functions of m. It follows that h and
hence M and S are also even functions of m, and t~at finally the coefficients of (Jm m) in Eq. 15 are

m mthesummation can be converted to one on positive values of m:
even in m. Thus, the summation can be converted to one on positive values of m:

mOf
CO sin(---)

m=l m
odd

me
sin(-•)

m [C1Mm(a8) - 1oGm(d,c)C 3Mm(8,'a)]

n cos m 8
a r

n cos m(r + 2)C r
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(14)

16£nr

·r

(12)

4.32



mOf me
81nr 0 sin(--) sin(-,-)

Lr r = - m 2 [C2Mm(5,B ) - IoGm(d,c)C 4Mm(0,a)
m=1 m m

odd+ poMm(Ba)hm(d,c) - oSm(a,B)] (17)

Because of the energy-conserving nature of the electromechanical coupling, there is redundancy
of information in the electrical and mechanical terminal relations. Reciprocity, as expressed by
Eq. 4.7.32b, can be made the basis for finding the Or dependent parts of the mutual inductances from
the torque, Eq. 9. (Here, there are rotor positions at which each of the mutual inductances vanish,
and hence Eq. 9 uniquely specifies the mutual inductances.) The reciprocity condition shows that an
alternative to the coefficient used to express the mutual inductances in Eq. 16 is

[C1 Mm(a,•) - IQGm(d,c)C 3Mm(0,a)] = c[C2 C3 - C1C4] (18)

where the quantity on the right is given with Eq. 9.

With the reciprocity relations in view, one efficient approach to determining the complete
lumped-parameter terminal relations is to first find the torque, Eq. 9, then use the reciprocity condi-
tions to find the mutual inductances agd finally compute the self-inductances from Eq. 13. This last
step only requires evaluation of (Am,Am) with self-current excitations (with currents in other
windings removed).

A more conventional approach is to compute the full inductance matrix from Eq. 13 and use the
lumped-parameter energy method (Sec. 3.5) to find the torque.

4.10 D-C Magnetic Machines

The wide use of the d-c rotating machine justifies the model development undertaken in this sec-
tion. But, these devices are also a prototype for a family of "conduction" machines which includes
the homopolar generatorl and magnetohydrodynamic energy convertors, to be taken up in Chap. 9.
Analogous electric field devices are the Van de Graaff generator, considered in Sec. 4.14, and electro-
gas dynamic pumps and generators, described in Chaps. 5 and 9.

The developed model for the d-c machine given in Sec. 4.3 (Table 4.3.1, Part 3) is given a more
complete characterization in Figs. 4.10.1 through 4.10.4. What is by convention termed the "field"
winding is on the stator, which consists of a highly permeable structure wound with a total of 2nf turns
excited through the terminal pair (if,vf). The "armature" is the rotor, with a winding connected
through the commutator to the terminal pair (ia,va), so that the distribution of current is essentially
stationary in space. The 6 dependence is shown in Fig. 4.10.2. The rotor core, like the stator mag-
netic circuit, is modeled here as being infinitely permeable.

With the assumption that the stator is infinitely permeable, it is clear that the magnetic poten-
tial on the stator surface, Yf, is constant for those points at r = Ro contiguous with the stator. In-
tegration of Ampere's integral law, Eq. 2.7.1b, over any contour passing between the pole faces through
the field winding and closing through the air gap shows that the pole faces differ in T by 2nfif. The
horizontal mid-plane is defined as the reference T = 0. As an approximation that specifies the fringing
field in the ranges of e between pole faces, the magnetic potential is taken as the linear interpolation
shown in Fig. 4.10.2a. Because the rotor is modeled as infinitely permeable, the tangential magnetic
field at the rotor surface is equal to the surface current density Kz, as shown in Fig. 4.10.2b (an ap-
plication of Eq. 2.10.21). The number of turns per unit azimuthal length on the rotor is Na.

The commutator, which consists of conducting segments that are sequentially connected to the ar-
mature terminals through brushes, as shown in Fig, 4.10.3a,2 is attached to one end of the rotor. Thus
it rotates with the same angular velocity Q (defined as positive in the positive 6 direction) as the
rotor. The model now developed does not include "end effects," in that the rotor is assumed to have a
length k that is much greater than the air gap Ro-R.

The boundary conditions, pictured graphically in Fig. 4.10.2, are first represented by Fourier
series (Eqs. 2.15,7 and 2.15,8 with knz-+ft and £+27rR). Thus, with (f) denoting the radial position r=Ro,

2n i sin mO ir
f = E f e-jm; f 2nfs oje 2 (1)m=-m m m mT( m)

(odd)

1. H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part I, John Wiley & Sons, New York,
1968, p. 312.

2. A. E. Fitzgerald, Ch. Kingsley, Jr., and A. Kusko, Electric Machinery, McGraw-Hill Book Company,
New York, 1971, p. 192.
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Fig. 4.10.1. Cross section of d-c machine.

IJtf

27[
(0)

8nflf

I~(b) t Naia 1"-. N.i.l~ e

Fig. 4.10.2. Circumferential distribution of magnetic potential at r = R
and tangential magnetic field intensity at r = R. 0
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and at the rotor surface where r = R,

2N i lm'r
a ja -a -J - aa
S= E Home m mW je

m=-00

(odd)

Fields in the air gap are represented by the transfer relations, Eqs. (a) of Table 2.16.2 with
k = 0. Hence, with positions (a) + (f) and (0) + (a) and with radii a + R° and 0 4 R,

] fm(R,Ro :m(Ro, R)] [ i

t 0 m m(R,Ro) fm(Ro R) RH /jm

where A-m has been introduced by using H = -(V)O'em

S0 0 0

+Va-

Fig. 4.10.3. (a) Typical winding scheme for armature of d-c machine shown in Fig. 4.10.1.
The r axis is directed out of the paper. Brushes make contact with commutator
segments which move to the right with armature conductors.2 (b) Winding distribu-
tion of solid wires.

Sec. 4.10
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Fig. 4.10.4 

This venerable d-c machine, of historical 
interest because it generated electric 
power for Boston at the turn of the century, 
has the advantage of putting the commutator 
segments and brushes in clear view. The 
pole faces surrounding the rotor at the 
upper right have a shape similar to that 
shown in Fig. 4.10.1, but the associated 
magnetic circuit is driven by armature coils 
wrapped on a horse-shoe magnetic circuit 
closing above the rotor. This is one of the 
first machines made after Thomas A. Edison 
moved from New York City to Schenectady in 
1886. 

Mechanical Equations: The rotor torque can be computed by integrating the Maxwell stress over a 
surface at r = Ro just inside the stator. This is an application of Eq. 4.2.3: 

, = (2'ITR R,)R /BfHf\. (4) 
o o"\r S/S 

-f -fBecause H = ~ (jm/R ), and in view of the averaging theorem (Eq. 2.15.17), substitution of Eqs. 1 and 
S2 converts~q. Wto 0 

(5) 

-f -f * With the substitution of Eq. 3a into Eq. 5, the "self-torque" (involving ~m(~m) ) sums to zero. 
(Because fm/m is an odd_fu~ction of m, the mth term in the sum cancels the -mth term.) The remaining 
expression is a sum on H~m~£. These amplitudes are evaluated using Eqs. 1 and 2. The resulting mag
netic torque is thus expressed as a function of the terminal currents: 

+00 ~(RO,R) sin(mSo)

, = -G i i·G = 16 RR R,~ N n L


mfa' m 1T 0 0 a f m=l m 
2 mS 

0 
(6) 

(odd) 
+ +

The speed coefficient, G , is positive. This is consistent with the (J x+B) iensity expected with 
if and is positive, as shown i~ Fig. 4.10.1. But the use of the force density J x B misrepresents the 
actual distribution of force density on the rotor. With the conductors embedded in slots of highly 
permeable material, the flux lines actually tend to avoid the conductors and pass through the rotor 
surface between the slots. This means that the magnetic flux in the region where there is a current 
density tends to zero as the permeability becomes infinite. In fact, the magnetic torque is largely 
the result of the magnetization force density acting on the rotor magnetic material between the slots. 
Fortunately, the stress tensor used to find Eq. 6 includes the magnetization force density, so the 
deductions are sound. But, because the stress tensor is evaluated in free space, the same calculations 
would be carried out and the same answer obtained even if the essential role of the magnetization force 
density were not recognized. That the torque is not transmitted to the rotor through the conductor is 
important, because it alleviates problems encountered in maintaining insulation in the face of mechani
cal stress and vibration. 

In terms of the electrical and mechanical terminal variables (if,ia"S)' Eq. 6 represents the 
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electrical-to-mechanical coupling.

Electrical Equations: To complete the model, it is necessary to express the mechanical-to-
electrical coupling in terms of the terminal variables. This is done by taking advantage of Faraday's
law, written for a contour of integration that is fixed in the laboratory frame of reference and
passes through the appropriate winding:

a -t

C S

For the armature, the circuit C is composed of whatever is externally connected to the terminals (va,ia)and the armature windings. The brushes are idealized as making continuous contact with the moving
conductors. A particular possible winding that would give the uniform distribution of rotor current
density is shown in Fig. 4.10.3.

Thg fixed frame electric field integrated on the left in Eq. 7 i related to the conductor current
density J by Ohm's Law, Eqs. 3.3.6, 2.5.11b, and 2.5.12b. Hence, I= /la - v x P i and

-vx 1 =0 vx(8)

where v = eRigis the velocity of the moving conductors. At a given instant, the armature winding
amounts to a superimposed parallel pair of windings connected through the brushes to the armature
terminals. One of the pair is shown in Fig. 4.10.3b. The other coil, represented by the dotted wires
of Fig. 4.10.3a, links the same flux. Each of these windings carries half of the armature current an:.
has the turns density Na .

For the "solid" windings, Eq. 7 becomes

-v + f dl + ORB i d B da (9)

wire wire

where S Is an integration over the surface enclosed by the contour C composed of the wire. The integra-
tion of E between the terminals external to the machine gives the term -va.

The current density in the wire is the net current ia/2 divided by the cross-sectional area of the
wire, Aa. Hence, the second term in Eq. 9 becomes

+i aJ .d = W a = Ri ; R - (10)
2A a a a ()2A

wire a a aa

where A is the cross-sectional area of the wire and £ is the total length of the wire joining the
brushesaat the given instant (the total length of the solid" wire in Fig. 4.10.3a). Hence, Ra is
the d-c resistance "seen" at the armature terminals.

The third term in Eq. 9 is evaluated by recognizing that those conductors between 8 and 8 + de
number (NaR)de, and therefore give a contribution QRBr(0)NaRd6. This integrand makes a positive con-
tribution in the interval ./2<6<37r/2, where the contour is in the positive z direction, and a negative
contribution in the interval -7r/2<8<f7/2 where the wires are returning in the -z direction:

37r/2 1r/2

ORBa *.dt=e r 2N Bado - k R2N BadJ
wire 7r/2 -w/2

(11)
+_ ga mT

= -40LR2N Z - je
a m

(odd)

The second equality results from substitution of the Fourier series and carrying out the integration.

It follows from substitution for Ba using Eq. 3b with Eqs. 1 and 2 used to relate m and Hm to the
terminal currents thatJfQRBa'isd = -QG i (12)

wir mf
wire
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where Gm is the same as defined with Eq. 6. To complete these steps, observe that fm/m3 is an odd func-
tion of m, so that the contribution that is proportional to is sums to zero. Also, Rgm(R,Ro) =
-Rogm(Ro,R), as can be seen from the definition in Table 2.16.2 or by application of the reciprocity
condition, Eq. 2.17.10. There is no contribution to Eg. 12 of the part of Ba induced by the armature
current because this "self-field" contribution to v x B at a winding location 8 is cancelled by that
at -8.

To evaluate the right-hand side of Eq. 9, first observe that the flux linked by the coils having
their left edges in the range de' in the neighborhood of 0' is the product of the flux linked by one
turn and the number of turns in that range of 8':

ch•- 6'+w •
BaBRd NaRdO' (13)

As a result, the total flux linked by all of the turns is

3w/2 61,+w

sBrda--- [ BaRd]NaRde' (14)

r/2 8'

Again, substitution of the Fourier series for Ba and evaluation of the integrals givesr
-a mit

Brda 4£N R2 r e 2 (15)
S mM-9 m

(odd)

Further evaluation, using Eqs. 3b, 1 and 2, with the observation that gm/m3 is an odd function of m
so that the contribution proportional to if vanishes, gives

16LNa-oR 3 m fm(RoR)
Brda = Li ; La E 4 (16)

SS a m m
odd

That if makes no contribution to the net flux linked by the armature winding is evident from Fig. 4.10.1.
The armature and field magnetic axes are perpendicular. Thus, with the substitution of Eqs. 10, 12 and
16, the armature circuit equation, Eq. 9, becomes

di
v = Ri - nG i + L - a (17)

a a mf a dt

where Ra, Gm and La are given by Eqs. 10, 6 and 16.

The circuit equation for the field winding is similarly found by applying Faraday's integral
law, Eq. 7, to a contour composed of the field winding. The right-hand side of Eq. 7 is approximated.
by the flux contribution over the surfaces of the respective poles:

i 3¶r--- 8 ---2

Brda= n f BfR d - nf BR dB (18)

S+ o · I2 o

Substitution of the Fourier series for B and integration gives
r

mit
'r f e f

B da = 41 R Z B2 cos me (19)
Sr om=I. (-jm) r o

This expression can now be evaluated using first Eq. 3a and then Eqs. 1 and 2. Because gm/m3 is an
odd function of m, the term proportional to is sums to zero with the result

2
16n LR L a cos mO sin mO

Bfda - L2i ; L - 2 m0 fm (R,R ) (20)
S m-l m o

(odd)
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Fig. 4.10.5. Regimes of energy conversion for a d-c magnetic field type interaction. Armature
voltage va is fixed and field current if is varied. With the identification of
variables if - vf, va + i , Ra ~iala Gm Ge, the power characteristics also

represent the Van de Graaff type of device developed in Sec. 4.14.

Note from the definition of ~m in Table 2.16.2 or the energy relation, Eq. 2.17.12, that fm(R,RO) < 0,
so that Lf is positive. The left-hand side of Eq. 7 is evaluated as for the armature except that the
conductor is fixed. Hence, Eq. 7 becomes the required circuit equation for the field:

dif

f Rfif + Lf df (21)

The total resistance of the field winding is Rf = Af f/Of, and Lf is given by Eq. 20.

The Energy Conversion Process: Simple consideration of Eqs. 6 and 17 relates the discrete elec-
trical and mechanical terminal variables to the energy conversion process. Consider the field excita-
tion current if and the armature voltage va as constrained by external sources. The steady-state
dependence of the armature current and the magnetic torque on the constrained variables implied by
Eqs. 6 and 17 is then

v QGa ai + m-- (22)
a a

T = - Gmif R+ if (23)

The electrical power input to the device follows from Eq. 22 as

v
iv =- - [va + QG if] (24)
aw R a veocta

while the mechanical power output is given by Eq. 23 multiplied by the angular velocity
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2G

R f a mf

These last two expressions are sketched in Fig. 4.10.5 to show the power-flow dependence on the field
current if with 0 assumed positive.

In view of the physical significance of iaVa and OT, it is possible to classify the regimes of
operation as also sketched in Fig. 4.10.5. It is because the electromechanical coupling has been
defined to include the electrical losses (by contrast with the point of view in Sec. 4.9, for example)
that the brake regime is possible.

The power conversion characteristics exemplified by this d-c machine and summarized in Fig. 4.10.5
are in common to the family of d-c or conduction type interactions. For example, with appropriate re-
definition of variables, the same characteristics pertain to the Van de Graaff machine of Sec. 4.14.

4.11 Green's Function Representations

In dealing with fields that are related to sources (the charge density or current density) through
linear differential equations, it is possible to use yet another approach that is based on the fact
that superposition of sources implies superposition of fields. This approach, which is an alternative
applicable to situations illustrated in Secs. 4.5 - 4.9, is familiar from the use of the superposition
integral to find the potential response from charge specified throughout all space or from the Biot-
Savart law for finding the magnetic field, given the distribution of current density throughout space.

Volume source distributions can often be considered the sum of distributions of surface charge
or surface current. The transfer relations are a convenient vehicle for obtaining the response to
such singular sources. By then integrating over the actual given source distribution, the field is
represented as the sum of field responses to the surface sources.

The determination of the fields and force associated with the charge beam of Sec. 4.6 illustrates
the method. Figure 4.11.1 shows a cross section of the configuration pictured in Fig. 4.6.1, but
with the only volume charge in a shell having radial thickness dr' at the radius r', where the density
is p(r'). The fields due to an arbitrary radial distribution of charge can be constructed once the
response to this surface charge, having density p(r')dr', is determined. At the outset, consider the
field to be a superposition of fields due to the potential Vo imposed at the surface r = a and to the
distribution of charge in the volume. The latter is determined by using the boundary conditions

c = 0, d e d _ e = (r')dr' (1)r r

Implicit is the understanding that there is no e dependence, and that the z dependence is exp(-jkz).

Fig. 4.11.1

Shell having surface-charge
density pf(r')dr' gives rise
to fields that can be summed
to determineA field due to
arbitrary charge distribution.

In the region r > r', the.flux-potential relations, Eq. (a) of Table 2.16.2, apply:

Sf (r',a) g (a,r')

bd o(r ',a) fo(a,r') 
(2)

whereas in the inner region, r < r', the limiting form of Eq. (c) is appropriate:

De = Cf (0,r')e (3)r 0 (3)
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Subtraction of Eq. 3 from Eq. 2b and use of the boundary conditions of Eq. 1 gives

d e = (r')dr' (4)

EL[f(a,r') - f (0,r'j

By the judicious use of these amplitudes and the potential distribution given for a canonical annular
region by Eq. 2.16.25, it is now possible to write the radial distribution of ý for an arbitrary dis-
tribution of charge density. There are three terms. The first is simply the potential due to the
voltage Vo applied at the outer wall. For this part, Eq. 2.16.25 is evaluated with 8 + 0 and m' = Vo"
The second term comes from evaluating Eq. 2.16.25 for the potential at r due to the charge shell at
r' < r (so that a = a, S = r', a = Ic = 0 and l = d) and adding up all contributions attributable to
charge inside the radius of observation r. Finally, the third term is written by again using
Eq. 2.16.25 to express the potential, but this time due to charge at a greater radius than the r, at
r < r' (so that a = r', 8 + 0 and ý= (d)and integrating over the distribution outside the observa-
tion position r:

(jkr) + r [Jo(jka)H(kr) - H(jka)kr)(jkr)]-___p(r')dr__'_

o J (jka) 0 [Jo(jka)H (jkr')-H (jka)J (jkr')J E[f (a,r') - f (0,r')j

ja Jo(jkr) (r')dr' (5)

r Jo ( j k r ' ) [f (a,r') - f (0,r')

To find the axial force acting on the entire beam, it is only the normal flux density at the outer
wall that is required. This can be found from Eq. 5, but is more easily determined directly from Eqs. 2a,
used first w th ýc = Vo and (d) + 0 to find the flux density due to the wall potential alone and then with
c = 0 and ýa given by Eq. 4 to find the part due to the volume charge. The latter is summed over the
total distribution of charge.

S=a go(a,r')p(r')dr' (6)
r (0a 0 0[f0(a,r') - f0 (O,r')]

The force is thus determined by substituting this expression into Eq. 4.6.3. Equation 6 holds for an

arbitrary charge distribution, but consider the uniform distribution of charge inside the radius R.
Then the integration needs only be carried out from 0 to R. With Vo and p(r') selected consistent
with Eqs. 4.6.1 and 4.6.2, it follows that the force is given by Eq. 4.6.8 with L1 replaced by L3,
where

LR go(a, r ' ) dr' 1 fkR Io(kr')
L = 0 = (kr') k d(kr') (7)

R3 o(ar') - f(0,r')] (kR)2 a)

The integral is carried out by recognizing that Io(kr') is a solution to Eq. 2.16.19 with r --r' and

m = 0:

( dlo(kr') 2
d r' d r = k2rl (kr') (8)
dr' dr' o

Hence, Eq. 7 gives the same result, Eq. 4.6.13, as found in Sec. 4.6 using the "splicing approach."

The same procedure applies if the charge has 8 dependence exp(-jme). Thus, by making use of a
Fourier series representation in 6 and z, the method can be used to describe fields associated with

arbitrary dependence on 6 and z.

The Green's function approach exemplified here is applicable to modeling the synchronous machines

developed in Secs. 4.7 and 4.8.1

4.12 Quasi-One-Dimensional Models and the Space-Rate Expansion

The "narrow-air-gap" model for rotating machines and long-wave models for electromagnetic wave

propagation are examples of quasi-one-dimensional models. The following sections illustrate the use

of such models in the kinematic description of electromechanical interactions. Extensive use will be

made in later chapters of models that similarly exploit a relatively slow variation of distributed
quantities in a "longitudinal" direction relative to "transverse" directions.

1. This is the method used by Kirtley in "Design and Construction of an Armature for an Alternator
with a Superconducting Field Winding," Ph.D. Thesis, Department of Electrical Engineering, MIT,
Cambridge, Mass., 1971, for a configuration closely resembling that considered in Sec. 4.8.

Secs. 4.11 & 4.124.41



:.st t .o .'i: - -~~: ' sttor'' i~lt

r d

n. --n

(a)

Fig. 4.12.1. (a) Cross-sectional view of synchronous electric field energy converter with
stator and rotor composed of perfectly conducting materials constrained by a
time-varying voltage source. The stator geometry is static, while the rotor
moves to the right. (b) Interaction represented by time-varying capacitance.
(c) Detail of air gap showing components of Ez to satisfy boundary conditions.

An example is shown in Fig. 4.12.1. Perfectly conducting surfaces having the potential differ-
ence v(t), vary from the planes x = 0 and x = -d by the amounts Es(z,t) and ýr(z,t), respectively.
What are the fields in the gap? This configuration is the basis for the study of the variable-
capacitance machine in Sec. 4.13. Fields in the gap can be approximated by two techniques. If s
and ýr are small compared to d, the boundary conditions can be linearized, and the fields found
approximately. This is the approach used in Sec. 4.3 for describing the salient pole interactions
(Eq. 4.3.16). It formally amounts to expanding the fields in an amplitude parameter expansion with
the zero-order fields those with Es and ýr equal to zero, the first-order terms those given by keeping
only linear terms in (ýs,dr) and so on. Thus, the validity of the model hinges on the amplitudes
(Es,,r) being small.

In quasi-one-dimensional models, amplitudes are not necessarily small. Rather, certain spatial
rates of change are small. In the configuration of Fig. 4.12.1, the distance X typifying variations
in the z direction is long compared to the distance d, y ` (d/X)2 << 1.

The relationship between linearized and quasi-one-dimensional models is illustrated in Fig. 4.12.2.
Linearized quasi-one-dimensional models must be consistent with the long-wave limit of the linearized
model. In establishing complex models, this fact is often used to motivate the appropriate "zero-order"
approximation which is the starting point in developing a quasi-one-dimensional model.

linearization

Fig. 4.12.2. Schematic characterization of relationships among three-dimensional,
quasi-one-dimensional and linearized models.
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Usually, quasi-one-dimensional models are motivated by physical reasoning, with little need for
formality. This is partly because higher order terms are seldom used. But, at least once,.it is
worhwhile to see how higher order terms are found, and that the approximation used is the lowest order
term in an expansion in powers of a space-rate parameter, in the example of Fig. 4.12.1, of y - (d/A)2.

The procedure here is analogous to that of Sec. 2.3 on quasistatics. The spatial coordinate z,
in which variables evolve slowly, plays the role of time. The physical idea that this slow variation
ought to make one field component dominate the other is built into the normalization of variables.
If modulations of the electrodes are slowly varying compared to the transverse distance d, each sec-
tion of the electrodes tends to form a parallel-plate capacitor. With Eo a typical electric field in
the x direction (the "dominant" field component), d taken as the typical length in the x direction,
but X as that length in the z direction, the appropriate normalization is

E = EE x- dxx " O--

Ez = E (d/A)E z = z_ (1)

Er " dr' Es " dE v = (Eod)v

In the gap, E is irrotational and solenoidal. In terms of the normalized variables, these'con-
ditions are

aE aE

az ax
(2)

aE aE
x Z

ax az

where the space-rate parameter y E (d/X)2 . To complete the formulation in terms of normalized variables,
boundary conditions at the scalloped perfect conductors are that the potential difference be v(t) and
the tangential fields vanish:

aB0 aC S
E = E(x = ); E - E(x -L - 1); E dx = v (3)

3z x a x
( -1

Only two of these three expressions are independent.

The normalized field components are now expanded in series of the form

Ex Exo + YExI + Y2E + "

(4)

Ez Ezo + E 2z2

Note that only one dimensionless parameter is involved, so for the particularly simple case at hand,
there is no ambiguity as to what lengths are most critical.

Substitution of the series of Eq. 4 into Eqs. 2 gives a pair of expressions which are poly-
nomial in y. Coefficients of each order in y must vanish; thus, the zero-order terms involve only the
zero-order fields

BExo zo

= 0
x

but the first order expressions are "driven" by the zero order fields

aEx1 aEzxl Ezl 0
az ax (6)

Exl E-zo
=x 9z
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It follows from Eqs. 3c and 5b that Exo is quasi-one-dimensional. It only depends on (z,t):

V
E = E (z,t) = (7)

xo xo ýs + 1 - r

What has been deduced as the zero-order Ex is just the voltage divided by the distance between con-
ductors. If variations with z are sufficiently slow, each section of the system forms a plane-parallel
capacitor. To find the other component of the zero-order field, note that Exo is only a function of
(z,t), so Eq. 5a can be integrated to obtain

3E
xo

E =x xo + f(z,t) (8)

where f(z,t) is an integration function. This function is determined by substitution of Eq. 8 into
Eq. 3a:

E x (E (9)
zo z z (Exo s

Substitution now shows that the tangential field on the lower surface is zero, Eq. 3b is satisfied. The
zero-order fields are represented in dimensionless form by Eqs. 7 and 9.

The first-order fields are predicted by Eqs. 6, now that the zero-order fields are known. From
Eqs. 6b and 9,

3E 3E 2E
Exl _1 zo aE xo 32 (10)

ax 77- x-xz + 2 (E X0)3x z z2 z2

The functional dependence on x on the right in this expression is explicit, and therefore integration
gives

2 32E 2
E = L xo -x (E + g(z,t) (11)
x1 2 2 z2 o

Because the zero-order Ex already satisfies the boundary condition, Exo integrates to v across the gap
(Eq.3c), the same integral of Eq. 11 must vanish and that serves to determine the integration function
g(z,t). At this point, two terms in the series of Eq. 4a have been found, and they are sufficient to
show what is meant by the expansion

2 3 1
SE 2 3 + (1 - )v xo x 1 s r

x (l + - Edr) I z +2I + (1 r)

(12)
32 1

+-2 (Exo2 s) (x - -[sR - ( - r
3z

By the definition of k used in normalizing z, 3
2Exo/3z2 is on the order of Exo. Hence, the first

term in Eq. 12 gives an accurate picture of the field, provided y << 1.

The procedure outlined is mainly of conceptual value. Certainly the quasi-one-dimensional

modeling of a complex problem begins with a physically motivated approximation: here, Eq. 7. Because

no more than the zero-order solutions are usually required, the formalism of normalizing the variables

and identifying dimensionless space parameters is not usually required.

In retrospect, the zero-order fields have a dependence on the transverse direction (x) that is

the lowest order polynomial in x consistent with the boundary conditions. Thus, Exo varies as xo

(it is independent of x); while Ezo can satisfy the boundary conditions only if it includes a linear

dependence on x.

4.13 Variable-Capacitance Machines

A model for one of the most commonly discussed "electrostatic" synchronous machines (which are

themselves rather uncommon) is shown in Fig. 4 .12.1a. Both the fixed and moving members have saliency
and consist essentially of perfectly conducting material. The time-varying voltage between stator and
rotor can either be the source of electrical power for producing a synchronous force in the z direction
on the rotor, or it can serve as the voltage of a bus representing an energy sink for the device acting
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Fig. 4.13.1.

(b)

Physical realization of variable-capacitance machine modeled in Fig. 4.12.1.
(a) Stator and rotor structure consisting of vanes. (b) Sinusoidal voltage
supplied through slip ri~gs together with v2 (t), showing temporal depend
ence of instantaneous force.

Fig. 4.l3.lc. Variable-capacitance generator designed for use with vacuum insulation. Estimated
output at 30,000 rpm is 6 kWat 20 kV (courtesy Goodrich High Voltage Corp.). Development
of variable-capacitance machines was attempted for the generation of high-voltage power
with application to ion propulsion in the space program. In space, vacuum insulation is
easily obtained. See reports for Contract No. AF33(616)-7230 from Goodrich-High Voltage
Astronautics, Inc., Burlington, Mass., to Aeronautical Systems Division. Air Force Systems
Command, U.S. Air Force, Wright-Patterson Air Force Base, Ohio. For example, Phase II
report by A. S. Denholm et al., 1961.
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Photograph of a variable-capacitance generator designed for use with vacuum insulation.



as a generator. In practice, the stator and rotor members might consist of metallic fins, as shown in
Fig. 4.13.1. In the model, regions on the stator and rotor that project into the air gap represent the
fins, while regions that dip into the stator and rotor material represent the gaps between fins.

The device is often referred to as a "variable-capacitance" machine because, when the relative
position of rotor and stator is such that the projections into the gap are just opposite each other,
the capacitance is at a maximum, while it reaches a minimum when the peak in rotor saliency falls just
opposite a "valley" in the stator material.

One way to view the energy conversion process is simply to represent the capacitance seen by the
voltage source as time-varying. Given the motion of the rotor, the capacitance C is a known function
of time, and the electrical problem comes down to determining a suitable temporal variation for C,
relative to a time-varying voltage, v. If power is supplied to the voltage source, it must come from
the mechanical forces responsible for making the capacitance vary with time. Thus, the other side
of the energy conversion process raises the question: How is a time-average force produced on the rotor
by the combination of the salient configuration and the time-varying applied voltage? In this section,
we will take up the second question first. What is the electrical force in the direction of motion on
the moving member?

The field point of view taken here results in the relation between geometry and capacitance
needed to model an actual system, even if the circuit point of view is taken. But also, it makes
the example useful in conceptualizing electromechanical interactions that cannot be given a lumped-
parameter model. For example, suppose that the undulations on the "rotor" were in fact material de-
formations produced by the field itself. This type of self-consistent electromechanical coupling
is not kinematic and will be taken up in Chap. 9,

Synchronous Condition: With a sinusoidal voltage v(t) having period T, applied between the rotor
and stator by means of a slip-ring, a time-average electrical force can act in the z direction on
the rotor only if there is a synchronism between the applied voltage and the rotor motion. To this
end, consider the physical origins of this force in terms of the model shown in Fig. 4.12.1. Regard-
less of the field polarity, at any position on the rotor surface there is an electric force per unit
area that is directed perpendicular to the surface and into the air gap. This latter fact makes it
clear that without the surface undulations, there can be no electrical force in the z direction.

To make a synchronous motor, on the time average, fields acting to the right over regions of
the rotor surface with a negative slope must produce a greater force than those acting to the left
on the regions where the slope is positive. What is the relationship between the excitation period
T and the rotor velocity U that could result in there being a time-average electrical force? In
terms of the displacement zr of Fig. 4.12.1, a maximum in the force to the right is obtained with zr
in the neighborhood of A/4. Thus, with the rotor in this position, the applied v2 should be at its
maximum. By the time the rotor is at zr = 3X/4, the force produced is in the wrong direction, and
hence v2 should be near a null. By the time zr = 5X/4, v2 should be peaking again. It is concluded
that in the time T/2, the rotor should move one wavelength: UT/2 - X. Thus, the synchronism con-
dition is met if

2X
z = Ut + 6; U (1)

Here, 6 is a spatial phase-angle determined by the mechanical load on a motor or the electrical load
on a generator.

The quasi-one-dimensional electric field is given by Eqs. 4.12.7 and 4.12.9 un-normalized:

aEv x a
E - E = (x + d) x - (Ex) (2)

The force on a section of the rotor one wavelength long and a length 2 in the y direction is
found by integrating the Maxwell stress tensor over an enclosing surface as pictured in Fig. 4.2.1a.
The only surface giving a contribution is the one of constant x in the air gap:

f = E Z+xcEE dZ (3)

z

This integral can be evaluated using the fields of Eq. 2. That it does not matter what x = constant
plane is used in carrying out the integration (except for physical reasons, to have the assurance
that the surface does not cut through one of the electrode inward peaks) is evident from the fact
that
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+ S - r

rz+X E z+2 2 2
0oEx(x+d) X dz = e0(+d) zz )dz = Eo(x+d)[E (z+X) - E (z)] - 0 (4)

The final deduction follows from the spatial periodicity of the structure. The remaining contributions
to the integral are expressed using the normalization

z = Xz, ( = d, r d, = X6, zr r (5)

With f E (E v2/d)f , Eq. 3 becomes

Z+ 1Z dz
f =z' l 1 [ r ]dz (6)

z 1 + E - Er az 1 + a - Er

Carrying out the differentiation in the integrand gives

z+1 r _sz+l (1 + )
f(zr) s z r z dz (7)

dz 

( 

Once the integral is completed, the function f depends on the amplitudes of E and Cr and on their
relative displacement zr. The time-average force is then computed by specifying this relative dis-
placement in terms of Eq. 1. In normalized variables, with t - Tt

S<fz>-- v2 (t)f(2t + 6)dt (8)

As an example, consider stator and rotor electrodes having sinusoidal shapes of equal amplitude
and a sinusoidal excitation voltage (note that Eqs. 7 and 8 are general in regard to these specifica-
tions):

ýs = ýo cos 2rz, r = o cos 2w(= - Zr) , v(t) = V cos 2wr (9)

Numerical integration of Eq. 7 then gives the dependence on relative displacemenj and amplitude shown
in Fig. 4.13.2a. To highlight the nonlinear effects of Co, f is normalized to Co so that much of the
dependence on the electrode amplitudes is suppressed.

The electrodes make their closest approach to each other with zr = 0.5 and are furthest apart
when Er = 0. Thus, for a given voltage, the fields tend to be more intense in the range 0.25<zr<0.5
than they are in the range 0<Zr<0. 2 5. This nonlinear efffect is reflected in the tendency of the
force to be skewed toward relative deflections in the former range. As would be expected from the
singularity in the denominator of Eq. 7, as the electrodes tend to touch (&o- 0.5), the force tends
to approach infinity just to the left of zr = 0.5. The function f(zr) is then used to numerically
integrate Eq. 8, with the result the normalized time-average force shown as a function of relative
displacement phase 6 and amplitude Eo in Fig. 4.13.2b. Again, the dependence on o0is partially
suppressed in the normalization.

The electromechanical model exemplified by Eqs. 7 and 8 is nonlinear, in the sense that the
electrode deflections can be of arbitrary amplitude in the range 0 <- o < 0.5. The fact that the
time-average force becomes infinite as o - 0.5 is to be expected. At some instant, the electrodes
are then at the point of touching and the associated field is becoming extremely large where the
electrodes are nearly in contact. (Physically, electrical breakdown would of course present a limit
on the validity of the theory.) Within the validity of an air-gap dielectric that does not permit
electrical breakdown, the procedure which has been followed is an example of the left vertical leg
in Fig. 4.12.2.

Further linearization, based on Es << d and r5<< d, demonstrates what is meant by a "linearized
quasi-one-dimensional" model and by the completion of the step represented by the lower horizontal
leg in Fig. 4.12.2.

For small amplitudes, (I + s - ) - 3 = 1 - 3(Es - Er), and hence Eq. 7 becomes

z+l

f(zr) z [(i + s)z r - 3(s - r) + ...]dz - Cow sin 2 rZr (10)
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Fig. 4.13.2a. Electrical force on rotor of variable- Fig. 4.13.2b. Normalized time-average
capacitance machine (Fig. 4.12.1) as a function force as a function of relative
of normalized relative displacement zr = zr/A, phase of sinusoidal excitation and
with amplitude of electrodes as a parameter. rotor position.

(In carrying out this and the next integration it is helpful to represent the expressions of Eq. 9 in
complex notation and make use of the averaging theorem, Eq. 2.15.14.) In turn, the time average
called for by Eq. 8 can now be evaluated:

f d= o cos2 2¶rt sin 2T(2t + 6)dt (11)

Carrying out this integration gives

o- 20in(IXd-i (12)

This approximation to the time-average force is shown by the broken curve of Fig. 4.13.2b.

Note that the small-amplitude force of Eq. 12 takes the form of the area LA multiplied by the
electric pressure E,(V/d)2 times factors representing the fraction of this product obtained by dint
of the geometry and the relative phase of the rotor and the driving voltage.

The variable-capacitance machine is closely related to the salient-pole machine described in
Sec. 4.3 (Case 4b of Table 4.3.1). In that example, the stator is "smooth" with electrodes con-
strained by a traveling wave of potential. The effect of having a stator with saliencies driven by
a simple voltage source (which is likely to be more convenient) is to produce a similar time-average
force.

Linearized from the outset, the variable-capacitance machine of this section could also be
viewed in terms of an interaction between the rotor traveling wave and one of two stator waves, the
sum of which is equivalent to the physical stator structure considered. The result of such an analysis
would be a model without restrictions as to the gap width relative to the wavelength. For the
related example of Sec. 4.3,. Eq. 4.3.27b retains information (represented by the denominator, sinh2 (kd))
about the effect of the air gap in the limit where d becomes large. This result, restricted to small
amplitude but valid for arbitrary air-gap spacing, is typical of the amplitude parameter expansion
or linearization modeling step of Fig. 4.12.2. Taking the long-wave limit for the example from
Sec. 4.3 constitutes taking the limit of Eq. 4.3.27b, kd<< 1. Following this route of first linearizing
and then taking the long-wave limit for the variable-capacitance machine considered in this section
is an alternative derivation of Eq. 12, and is considered in the problems.
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4.14 Van de Graaff Machine

A cross-sectional view of a Van de Graaff generator is shown in Fig. 4.14.1. An insulating belt
is charged to one polarity as it passes over the lower pulley. This charge is carried upward to the
essentially field-free region under the high-voltage terminal dome where it is removed and replaced by
charge of opposite polarity, which then makes the return trip on the downward moving portion of the
belt. Surrounding the belt are equipotential rings which help in controlling the field distribution by
supporting much of the charge imaging that on the belt. The electric field consists of a generated
field that is essentially vertical and a self-field associated with the charge on the belt. The equi-
potential rings help to insure that the self-field is essentially perpendicular to the belt surface
and hence does not reinforce the generated field. To achieve relatively high electric stress (exceeding
107 V/m), the machine is operated in electronegative gases at elevated pressure.

An objective in this section, achieved while developing a lumped-parameter model for the simplified
Van de Graaff generator shown in Fig. 4.14.2, is to further illustrate the use of quasi-one-dimensional
models. This makes it possible to point out the analogies between d-c magnetic machines, Sec. 4.10,
and what might be termed "d-c electric machines."

In several regards, the model shown in.Fig. 4.14.2 does not include features of the machine shown
in Fig. 4.14.1. To avoid undue complexity, the equipotential rings are uniformly distributed between
the high-voltage dome and the ground at the bottom. In the machine pictured in Fig. 4.14.1, charging is
by means of a corona discharge (ion impact charging). An alternative scheme, which has the advantage
of being more easily related to a physical model, makes use of induction charging of a belt consisting
of conductors linked by insulators.1 For the present purposes, the belt (having thickness d) is con-
sidered to carry metallic segments that are insulated from each other. "Field" voltage sources vf are
used to induce belt charges of opposite polarity at the top and bottom. As the belt passes over the
lower pulley, successive segments contact a grounded brush and hence form essentially plane-parallel
capacitors having a voltage vf across the belt thickness d. With the assumption that the belt elec-
trodes essentially cover all of the belt surface, the belt surface charge is related to the field volt-
age by t 6p

,f
f d

~.) A~\ - -

60Ž

The current i' both supplies the charge carried upward by the belt and neutralizes that coming downward.
a

Hence, for a pulley angular velocity S1and radius R,

i' = 2aft(iR) - 2-'RE vfd ff

Quasi-One-Dimensional Fields: In the ideal, the generated field is uniformly distributed with
respect to the z axis. To achieve this ideal, in spite of the metal pressure vessel, the equi-
potential rings are tapped onto a distributed bleeder resistance running from the dome to the ground
plane. At least under steady-state conditions, this insures that the ring potential Or(z) has the
required linear distribution consistent with a uniform z-directed electric field. The following
developments identify the implications of having time-varying terminal variables, (va,ia) and
(vf,if).

The transverse field components are determined as though any local region along the z axis is
one in which the x-directed fields are independent of z. Thus, in the region between rings and pressure
vessel,

r
x3 c

The fields Ex2 and Exl (Fig. 4.14.2) must satisfy Gauss' law at the belt surface and be consistent
with the potential being the same on the ring where it faces the belt on the right and at the same z
location on the left. Hence, with fields defined positive if they are as shown in Fig. 4.14.2,

0o(Exl + Ex2) = af

-2bEx2 + 2aEx1 = 0

Here, E 2 is approximated as being uniform over the width of the belt, even though the rings are
cylindrical and the belt is flat. The distance b is an average spacing. Simultaneous solution of these

1. W. D. Allen and N. G. Joyce, "Studies of Induction Charging Systems for Electrostatic Generators:
The Laddertron," J. Electrostatics 1, 71-89 (1975).
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last two expressions shows that

af
Ex2 b (6)

° (1 + b)
0o a

These transverse fields make it possible to now write expressions that determine the field dependence
on z. A section of the ring structure having incremental length Az is shown in Fig. 4.14.2. Con-
servation of charge for this incremental section, which takes the form of a ring-shaped volume
enclosing rings in the length Az, is written be defining a ring charge per unit length (in the z direc-
tion), AX:

-a(X r Az)
ir(z + Az) - ir() - at (7)

In the limit Az + 0, Eq. 7 becomes

air r 

(8)Fz = t (8)

By symmetry, the contribution to the ring structure charge from the field inside (the images of the belt
charges) cancel. What negative charge there is on the rings at the left imaging the positive belt charge
on the upward-moving belt is canceled by the positive charge on the right imaging the downward moving
negative belt charge. Hence, the only contribution to Ar in Eq. 8 comes from the fields between the
ring structure and the pressure vessel wall, approximated by Eq. 3; Ar = 2eo0r/c. Thus, Eq. 8 becomes

ai 2ke as3
r or (9)

S c at

A second law is required to determine the distribution of (ir,Sr). This is simply Ohm's law relating
the z component of the electric field to the current carried by the bleeder resistance. With Ra the
total resistance, and hence Ra/L the resistance per unit length, it follows that

--ar R (10)
-z L r

quasistatics: There is now enough of the model developed that a meaningful discussion can be made
of two quasistatic approximations implicit to a lumped parameter model for the Van de Graaff machine.

First, Eq. 1 is misleading in that it implies that the belt charge is instantaneously established
in proportion to the field voltage over the full length of the belt. Of course, an abrupt change in vf
would result in a "wave" of surface charge carried to the high-voltage dome by the moving belt. In the
model developed here, temporal variations are presumed to be long compared to a transport time L/GR.
With this caveat as to the dynamic range of the resulting model, the belt charge is taken as proportional
to the field voltage over the full length of the machine. The machine dynamics are quasistatic relative
of the time required for the belt to traverse the distance between pulleys.

A second quasistatic approximation is necessary to approximate the field distribution governed by
Eqs. 9 and 10 in a way that leads to a lumped-parameter model. Elimination of ir between these equations
results in the diffusion equation. The potential (and hence the ring charge) diffuses in the z direc-
tion, and the resulting dynamics are not in general representable in lumped-parameter terms. The
subject of charge diffusion on heterogeneous structures is taken up in Sec. 5.15. Here, the quasistatic
concepts of Sec. 2.3 are revisited to obtain a low-frequency lumped parameter model. But, now the
critical rate process is represented by a charge diffusion time, not an electromagnetic wave transit
time.

If the fields were truly static, Eq. 9 shows that the current would be independent of z. Thus,
the zero-order current is ir = iro(t). The associated potential distribution can then be found by
integrating Eq. 10:

Sv A =Ri (11)
ro a ; va airo (11)

This is the desired potential distribution. It assures a uniform generated field (z-directed) over the
region of the moving belt.

Because the voltages (vf,va) are in general time-varying, there is an additional capacitative
current. The capacitance is distributed between the high-voltage terminal and ground, and is deduced
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by considering the first-order current irl , determined from Eq. 9 with the zero-order voltage (given
by Eq. 11) introduced for Or. (Note that the procedure followed here is an informal version of that
outlined in Sec. 2.3.):

airl 2L£E dva z

8z c dt L (12)

The z dependence is given explicitly, so this expression can be integrated to obtain

Eo dv
i + f(t) (13)
rl cL dt

with f(t) an integration function to be determined shortly by boundary conditions. Introduction of
Eq. 13 on the right in Eq. 10 gives an expression for Orl that is similarly integrated to obtain

R ae dv 3
- -- o-_ a + f(t)z (14)

rl L cL dt t)

Because Or = 0 at z = 0, the second integration function has been set equal to zero.

The total voltage and current distributions consist of the sum of zero and first order parts.
Because the zero-order distributions already satisfy the correct boundary conditions, the first order
voltage must vanish at z - L. This serves to evaluate f(t) in Eq. 14. If f(t) is then introduced
into Eq. 13, and that expression evaluated at z = L, the current ir(L,t) has been found:

v 2ULE dva o a
ir iro + +a (15)
r ro rl R 3c dta

Note that because of the essentially linear distribution of voltage over the length of the structure,
the equivalent capacitance is 1/3 what it would be if the structure formed a plane-parallel capacitor
with the vessel wall. (This same equivalent capacitance can be computed with much less trouble and 2
.much less insight by simply finding the total electric energy storage and setting it equal to k Ceq a.)

Electrical Terminal Relations: The high-voltage terminal has a total current is which is the
sum of -ia given by Eq. 2, the ring-structure current ir from Eq. 15, and a current required to charge
the dome. With the last of these modeled as charging half of a spherical capacitor, the high-voltage
terminal relation has the form

v dv
a a

i = -- - Gev + C - (16)a R e f a dta
where

2RLE
2.RE o

S -; C e2 + 2rE (a + b)e d a 3c o

The field terminal relations depend on details of the specific geometry in the region of the
pulleys. They take the form

vf dvf
i = -- + Cf (17)
f R f dtf

where Rf is the resistance of the belt material and the pulley mounting and Cf is the capacitance of
the pulley relative to ground or to the high-voltage terminal.

Mechanical Terminal Relations: The electrical torque acting in the 6 direction on the lower pulley
is computed by simply multiplying the z-directed force per unit area, afEz, by the total belt area
21L and the lever arm R. In view of Eq. 1 for of and the fact that Ez = -va/L,

T = -Gevfva (18)

where the coefficient Ge is' the same as defined with Eq. 16.

Analogy to the Magnetic Machine: The terminal relations summarized by these last three equations
have a canonical form not only found to describe other electric machines of quite different configura-
tion, but also to describe magnetic d-c machines. For example, compare these relations to Eqs. 4.10.17,
4.10.21, and 4.10.6. The analogy is complete provided that the identification is if - vf, va - ias
Ra - R~ , Gm 4 G,.
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The Energy Conversion Process: Modes of energy conversion are explored by considering the machine
constrained in such a way that the high-voltage terminal current ia is fixed, as is also the angular
velocity Q. Then, the machine is made to pass from one energy conversion regime to another by varying
the field voltage vf.

Under steady-state conditions, the electrical power input is expressed by solving Eq. 16 for va
and multiplying by ia:

vi = Rai (i +~G v ) (19)

The mechanical power output is also written in terms of (vf,ia) by substituting for va in Eq. 18 and
multiplying by 0:

QT = -2 GRavf(ia + Gev ) (20)

With the appropriate identification of variables, plots of these expressions, and the implied modes of
energy conversion, are as shown in Fig. 4.10.5.

4.15 Overview of Electromechanical Energy Conversion Limitations

This chapter has two broad objectives. On the one hand, examples are chosen to illustrate
techniques for using a field description in deducing lumped-parameter models. On the other hand, the
examples convey an overview of systems that are electromechanically kinematic while providing a back-
ground for understanding the kinematic systems taken up in Chaps 5 and 6 and the coupling to deform-
able media developed in later chapters.

The Maxwell stress acting on a "control volume" enclosing the moving material, introduced in
Sec. 4.2 as a convenient way to relate the fields to the total force or torque, is also useful in
obtaining a qualitative perception of basic limitations on the energy conversion processes. These
volumes are represented in an abstract way by Fig. 4.15.1. The longitudinal direction, denoted by (k),
generally represents the direction of material motion. Perpendicular to this is the transverse direc-
tion denoted by (t).

The net magnetic or electric force on the volume in general has contributions from both the
transverse and longitudinal surfaces, At and At. But, in all of the examples of this chapter, shear
stresses rather than normal stresses contribute to the energy conversion process. To exploit this
fact, the active volume of the devices has a longitudinal dimension that is large compared to trans-
verse diiensions. For example, in rotating machines, maximum use of the magnetic or electric stress
is made by having an "air gap" that is narrow compared to the circumference of the rotor. In the
Van de Graaff machine, the same considerations lead to a "slender" configuration with the belt charges
producing an electric field Et across a narrow gap and the generated field being Ek.

In all of these "shearing" types of electromechanical energy converters, the mechanical power
output takes the form

Pm = UAtK PIkHHtD m = UAtK E kEEtE (1)

Here, U and A are respectively the material velocity and an effective transverse area, e.g., the rotor
surface velocity and area respectively in a rotating machine. The largest possible net contribution of
the magnetic or electric shear stress contribution, PHkHt O and j EEcEtg respectively, is obtained if
stress contributions to one of the surfaces of the control volume are minimized. Generally, this is
accomplished by designing field sources into the volume. The factor K in Eq. 1 reflects geometry,
material properties and phase angles. In a synchronous machine, it accounts for the air-gap spacing,
the sinusoidal spatial dependence of the excitations and the relative phase of stator and rotor excita-
tions. In the variable-capacitance machine of Sec. 4.13, this factor (which represents the "cut" of
the ideal power output that is obtained) is also proportional to the product of the saliency amplitudes
on rotor and stator.

Because of their higher energy conversion density, it is generally recognized that conventional
magnetic electromechanical energy conversion systems are more practical than their electric counter-
parts. This predisposition has its basis in the extreme disparity between electric and magnetic shear
stresses that can be produced under ordinary conditions.

In conventional magnetic equipment, the limit on the magnetic flux density, set by the satura-
tion of magnetic materials, is in the range of 1-2 tesla (10 - 20 kgauss). The electric field
intensity in air at atmospheric pressure (over macroscopic dimensions in the range of 1 mm to 10 cm
usually of interest) is limited to less than the breakdown strength, 3 x 106 V/m. Thus under con-
ventional conditions, the ratio of powers converted by electric and magnetic devices having the same
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Fig. 4.15.1. Abstraction of regions of active electromechanical
coupling in magnetic and electric field systems.

velocity U, effective area At and factor K is (from Eq. 1) the ratio of the respective shear stresses.
Using as typical numbers, B = 1 and E = 106 V/m, this ratio is

(Pm electric , oE Et -5
10 (2)

(Pm)magnetic BLBt/ o

The disadvantage inherent to electric energy conversion devices can be made up by increasing the
velocity, the effective area, or the electrical breakdown strength. Now, illustrated by some examples
is the way in which rough estimates of the energy converted can be made with Eqs. 1, provided the fac-
tors are evaluated with some appreciation for the underlying engineering limitations.

Synchronous Alternator: A large synchronous machine, driven by a turbine in a modern power plant,
would have the typical parameters:

rotor radius b = 0.5 m

rotor surface velocity U = 2w60b = 188 m/sec

rotor length k = 7 m

air gap transverse and longitudinal flux densities = 1 tesla

These figures are typical of the full-scale generator modeled by the machine shown in Fig. 4.7.1c. An
upper bound on the factor K in Eq. 1 to take into account the sinusoidal field distributions on rotor
and stator, is reasonably taken as 1/2. Thus, from Eq. la, the mechanical power requirement (and with
reasonable efficiency, therefore the maximum electrical power output) is expected to be approximately

P = (188)[(27)(0.5)(7)](0.5)(l)/47 x 10 - 7 = 1.6 x 109 watts (3)m

This is about 50% more than the power rating of existing equipment having roughly the parameters used.

Superconducting Rotating Machine: The limit on practical magnetic shear stress set by the satura-
tion of magnetic materials more basically arises from the Ohmic heating limit on current density. A
synchronous machine like that described in Sec. 4.9 but with no magnetic materials is in principle not
limited by saturation. But it is limited by the current density consistent with available means for
removing the heat from the windings. (A current density of 3 x 106 A/m2 is projected for the normal
conducting armature of the machine shown in Fig. 4.9.2.) The incremental increase in magnetic field
associated with increasing the current density once the magnetic materials have been saturated makes
conventional operation in this range generally unattractive.

One way to obtain higher field intensities than are practical using conventional conductors is to
make use of superconductors. In time-varying fields, superconductors in fact have losses and are dif-
ficult to stabilize. But, for slowly varying and d-c fields they can be used to produce magnetic field
intensities greater than the 1-2 tesla range of conventional equipment. Under balanced synchronous
conditions, the field winding is only subject to d-c fields, while the armature winding carries a-c
currents and is subject to a-c fields. Thus, in the machine of Fig. 4.9.2, the rotor winding is super-
conducting while the stator is composed of normal conductors. With that machine, the projected (rotor)
field is in the range of 5-6 tesla and the area At required for a given power conversion accordingly
reduced. For example, a two-pole 60 Hz machine having Br = 1 tesla, Be = 5 tesla and rotor length and
radius X = 5 m and R = 0.3 m, respectively, has an estimated mechanical power input of AtTyrRP =
(2T£R)(BrBe/2wo)(R)(27rf) = 2 x 109 watts. These are representative of the parameters for a projected
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2000 MVA superconducting alternator.1

Variable-Capacitance Machine: In machines ex-
ploiting electrical shear stresses, the limit on
power converted posed by electrical breakdown can
be pushed back by either making the insulation an
electronegative gas under pressure, or vacuum.
Typical improvements in breakdown strength with
increasing pressure above atmospheric are shown in
Fig. 4.15.2.2 In principle the field intensity can
be increased to more than 3 x 107 V/m, and hence the
electric shear stress can be increased by a factor
of more than 100 over that used in calculating Eq. 2.

The machine shown in Fig. 4.13.1c is designed
for operation in vacuum. Here, the mean free path
is very long compared to the distance between elec-
trodes. As a result, breakdown results as particles
are emitted from the electrode surfaces, accelerating
until impacting the opposite electrode where they can
produce further catastrophic results. Because the
voltage difference between electrodes determines the
velocity to which particles are accelerated, break-
down is voltage-dependent. Put another way, the
breakdown field that can be supported by vacuum is a
decreasing function of the gap distance. It also
depends on the electrodes. Using steel electrodes
having exposed areas of 20 cm2 , a typical break-
down strength under practical conditions appears
to be 4 x 107 volts across a 1-mm gap.

3

The electric machines illustrate
conversion density can be increased by
device volume into active subregions.

how the power
dividing the
In an electric

E

-4-

U0

Fig.

200
pressure

400
- ibs/in2

4.15.2. Breakdown strength of common gases
as a function of gas pressure for several
different electrode combinations.2

machine, current densities are small and as a re-
sult little conducting material is required to make an electrode function as an equipotential. By
making stator and rotor blades (as well as intervening vacuum gaps) thin, it is possible to pack a
larger amount of area At into a given volume. The limitation on the thickness and hence on the degree
of reticulation that can be achieved in practice comes from the mechanical strength and stability of
the rotor. Because of material creep and fracture, centrifugal forces pose a limit on the rotational
velocity; but more important in this case, if a blade passes through a high-field region slightly off
center, the result can be a transverse deflection that is reinforced by the next pulsation. The tend-
ency for the blades to undergo transverse vibrations as they respond parametrically to the pulsating
electric stress on each of their surfaces limits the effective area.

As numbers typical of the machine shown in Fig. 4.13.1c (where there are six gaps), consider:

R = mean radius of blades = 0.2 m
blade length = 0.12 m

U = mean blade velocity at 30,000 rpm = 630 m/sec (an extremely high velocity)

E = 5 x 106 V/m

At = (0.2)(2rr)(0.12) = 0.9 m2

Remember that the maximum electric field appears where the electrodes have their nearest approach, so
the average field used is considerably less than the maximum possible. According to Eq. lb with K=l,
the power output is then at most 125 kW. Actually, the factor K significantly modifies this rough
estimate. According to Fig. 4.13.2b, for 0o/d = 0.4 and a X/4 phase,

K = (3.2) -)

1. J. L. Kirtley, Jr., and M. Furugama, "A Design Concept for Large Superconducting Alternators,"
IEEE Power Engineering Society, Winter Meeting, New York, January 1975.

2. J. G. Trump et al., " Influence of Electrodes on D-C Breakdown in Gases at High Pressure," Elec-
trical Engineering, November (1950).

3. A. S. Denholm, "The Electrical Breakdown of Small Gaps in Vacuum," Can. J. Phys. 36, 476 (1959).
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For d/X = 0.1, K = 2.5 x 10-2 , and the fraction of the ideal energy conversion is not very large. In-
stead of 125 kW, the postulated machine is predicted to produce 3 kW.

Electron-Beam Energy Converters: One class of electric field energy convertors that often have
very respectable energy conversion densities make use of electrons themselves as the moving material.
The model of Sec. 4.6 is developed with this class of devices in mind. A high-energy conversion den-
sity can result from the extremely large electron velocities that are easily obtained. For example,
an electron having mass m and charge q accelerated to the potential 0 has the velocity

U @ (5)

-31 -19
For the electron, m = 9.1 x 10 kg and q = 1.6 x 10 C. Thus, an accelerating potential of 10 kV
results in a beam velocity of 6 x 107 m/sec!

In electron-beam devices, the electric shear is not usually limited by electrical break-
7 ,down, but rather by the necessity for maintaining olumnated electrons in spite of their tendency to

drepel each other. To inhibit lateral motion of the particles due to their space charge, a
C·Od magnetic field is commonly imposed in the direction of electron streaming. The Lorentz force, Eq. 3.1.1,

then tends to convert any radial motion into an orbital motion, while letting electrons stream in the
same direction as the imposed magnetic field.4

Electron beams are typically used to convert d-c electrical energy to high-frequency a-c. In fact,
the high beam velocity requires that for a synchronous interaction, the frequency f is the beam velocity
U divided by the wavelength of charge bunches; f = U/A. Hence, for a wavelength X - 6 cm, the frequency
for a traveling-wave interaction with the 10 kV beam would be essentially f -=6x 107/6 x 10-2 = 109 Hz.
The practical limit on how short X can be while obtaining useful coupling between beam and traveling-wave
structure is evident from Sec. 4.6.

The kinematic picture for the beam is useful for making the electroquasistatic origins of the
coupling clear and to identify the nature of the synchronous interaction upon which devices like the
traveling-wave tube depend. But, because the electron bunching takes place self-consistently with the
coupling fields, it is necessary, i engineering electron-beam devices, to treat the electrons as a
continuum in their own right.4 Such examples are taken up in Chap. 11.

Both electron-beam devices and synchronous alternators convert mechanical to electrical energy.
As a reminder rather than a revelation, note that the synchronous alternator is of far more fundamental
importance for human welfare, because when attached to the shaft of a turbine driven by a thermal heat
cycle, it is capable of converting low-grade thermal energy to a high-grade electrical form. Its con-
version of energy naturally fits into schemes for production of energy from natural basic sources.
By contrast, the electron-beam devices only convert d-c electrical energy to a high-frequency electrical
form.

Sec. 4.15

4. M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics, McGraw-Hill Book Company,
New York, 1964.
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Problems for Chapter 4

For Section 4.3:

Prob. 4.3.1 The cross section of a "double-sided machine"
is shown in Fig. P4.3.1. The "rotor" is modeled as a
current sheet.

(a) Find the force f, acting in the z direction on an
area A of the sheet.

(b) Now take the excitations as given by Eqs. 4.3.5a and
4.3.6a for synchronous interactions and evaluate f

(c) For a d-c interaction, the excitations are given
by Eqs. 4.3.10a. Find fz"

I-- S -oo --

KS Re KRexp(-jkz)
d /Lo r
I Kr=R e Krexp(-jkz)

ý00000000000000000000000000Z

d S "S
K=ReK exp(-jkz)

OOOOOOOOOOOOOOOOO°°°°°OOOOo

Fig. P4.3.1

Prob. 4.3.2 The developed model for a "trapped flux"
synchronous machine is shown in Fig. P4.3.2. (See
case 3a of Table 4.3.1). Te stator surface current
is specified as in Eq. 4.3.y. The "rotor" consists
of a perfectly conducting material. When t=O, the
currents in this material have a pattern such that
the flux normal to the rotor surface is Br=Br cosx 0
k[Ut-(z-6)], where U is the velocity of the rotor.
Find fz first in terms of KS and Br and then in terms
of Ks and B . In practice, such a synchronous force
would exist as a transient provided the initial current
distribution diffused away, as described in Sec. 6.6, on
a time scale long compared to that of interest.

Prob. 4.3.3 The moving member of an EQS device takes the
form of a sheet, supporting the surface charge af and moving
in the z direction, as shown in Fig. P4.3.3. Electrodes on
the adjacent walls constrain the potentials there.

(a) Find the force f, on an area A of the sheet in terms of
(,a & $b).

(b) For a synchronous interaction, w/k = U. The surface charge
is given by -aocos[wt-k(z-6)] and 4a = Vocos(wt-kz). For

even excitations ob=oa. Find f .

(c) An example of a d-c interaction is the Van de Graafgmachine
taken up in Sec. 4.14. With the excitations Oa= Db=-Vocos kz
and Uf=rosin kz, find fz.

66666ri6 ~6660606066

S \Ks Re KSexp(-jkz) X

dI Br: RBrexp(-jkz)

cI-O-co --
U

Fig. P4.3.2

I e=ReDexp(-jkz)
d
J o-f=Ref exp(-jkz)

b -b
SbRe=Fexp(-jkz)

Fig. P4.3.3

For Section 4.4:

Prob. 4.4.1 This problem is intended to give the opportunity to follow through the approach to develop-

ing a lumped parameter model illustrated in Sec. 4.4. However, for best efficiency in determining the

electrical terminal relations, it will be helpful to use the transfer relations of Sec. 2.19, and study

of Sec. 4.7 is recommended in this regard.

The cross section of a model for a permanent-magnetization rotating magnetic machine is shown in

Fig. P4.4.1. The magnetization density in the rotor is uniform and of magnitude Mo . The stator is

wound with a uniform turn density N, so that the surface current density over 260, the span of the

turns, is Ni(t).

(a) Show that in the rotor volume, B is both solenoidal and irrotational so that the transfer

relations of Table 2.19.1 apply provided that pH0 is taken as B .

(b) Show that boundary conditions at the rotor interface implied by the divergence condition on

B and Ampere's law are

n • B = 0 ; nx [BI = PoKf + on x EM
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Prob. 4.4.1 (continued)

(c) Find the instantaneous torque on the rotor as a function of (0r,i). (Your result should be
analogous to Eq. 4.4.11.)

(d) Find the electrical terminal relation X(8r,i,Mo). (This result is analogous to Eq. 4.4.14.)

Fig. P4.4.1

For Section 4.6:

Prob. 4.6.1 A charged particle beam takes the
form of a planar layer moving in the z direction
with the velocity U, as shown in Fig. P4.6.1. The
charge density within the beam is

p = Re o ejk

Thus the density is uniform in the x direction
within the beam, i.e., in the region -b/2 < x
< b/2. The walls, which are constrained in
potential as shown, are separated from the
hbem hv nlanar reinno n f free snpa of hilek-

ness d.~ Fig. P4.6.1
(a) In terms of the complex functions of time Vo and po,

find the electrical force acting on an area A (in the y-z plane) of the beam in the z direction.

(b) Now, specialize the analysis by letting

=a= 0f = V cos(wt-kz)

P =-p cos[wt-k(z-6)]

Given that the charged particles comprising the beam move with velocity U, and that k is specified
what is W? Evaluate the force found in (a) in terms of the phase displacement 6 and the amplitudes
Vo and po.

(c) Now consider the same problem from another viewpoint. Consider the entire region -(d+ )< x < (d+•)
as one region and find alternative expressions for parts (a) and (b).

For Section 4.8:

Prob. 4.8.1 Transfer relations are developed here that are the Cartesian coordinate analogues of
those in Sec. 4.8.

(a)With variables taking the form A = Re A(x,t)e-jk y and H, = Re Hy(x,t)e- jk y and a volume current
density (in the z direction) J = Re J(x,t)e-jky, start with Eq. (b) of Table 2.19.1 and show
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Prob. 4.8.1 (continued)

that the transfer relations take the form

A• -coth kA si1h k

sinh kA y

-coth kA 1 HI A
sinh kA yp p

- +

- coth kA H A
sinh kA yp p

(b) The bulk current density and particular solution for A are represented in terms of modes li.(x):
1

J = Re E Ji(t)HT(x)e-jkY
i=0

Show that if the modes are required

the transfer relations become

III
k

A

-coth kA sinh kAsinh kA y

-l
inh kA coth kA H

sinh kA y

A =.Re E Ai(t)fli(x)e-jky
i=0

to have zero derivatives at the surfaces,

+ i0T 2 2
i=O (-y) + k

For Section 4.9:

Prob. 4.9.1 A developed model S
ft A 4iLOdiA4L hi1-I4

is shown in Fig. P4.9.1. The
infinitely permeable stator
structure has a winding that
is modeled by the surface cur-
rent Ks = Re Ks e-jky. The
rotor consists of a winding
that completely fills the air

gap and is Dacked Dy an inri-
nitely permeable material.
At a given instant, the current
distribution in the rotor windings Fig. P4.9.1

is uniform over the cross section of the gap; it is a square wave in the y direction, as shown. That
is, the winding density (n wires per unit area) is uniform. Use the result of Prob. 4.8.1 to find the
force per unit y-z area in the y direction acting on the rotor (note Eq. 2.15.17). Express this force
for the synchronous interaction in which Ks = Kscos (wt - y).

For Section 4.10:

Prob. 4.10.1 A developed model for a d-c
machine is shown in Fig. P4.10.1. The field
winding is represented by a surface current
distribution at x = b that is a positive
impulse at z = 0 and a
negative one at z = k, Fig. P4.10.1
each of magnitude n fif as
shown. Following the outline given in
Sec. 4.10, develop the mechanical and elec-
trical terminal relations analogous to
Eqs. 4.10.6, 4.10.17 and 4.10.21. (See
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Prob. 4.10.1 (continued)

Prob. 4.14.1 for a different approach with results that suggest simplification of those found here.)

For Section 4.12:

Prob. 4.12.1 The potential along the axis of a cylindrical coordinate system is O(z). The system is
axisymmetric, so that Er = 0 along the z axis. Show that fields in the vicinity of the z axis can be
approximated in terms of O(z) by Ez = -do/dz and

KEr dz

For Section 4.13:

Prob. 4.13.1 An alternative to the quasi-one-dimensional model developed in this section is a "linear-
ized" model, based on the stator and rotor amplitudes being small compared to the mean spacing d. In
the context of a salient-pole machine, this approach is illustrated in Sec. 4.3. Assume at the outset
that Er/d << 1 and Es/d << 1 but that the wavelength X is arbitrary compared to d. Find the time-
average force acting on one wavelength of the rotor. Take the limit 2rtd/X << 1, and show that this
force reduces to Eq. 4.13.12.

Prob. 4.13.2 A developed model for a salient
pole magnetic machine is shown in Fig. P4.13.2.
A set of distributed windings on the stator
surface impose the surface current

K = Ks sin(wt-kz)
y o

and the geometry of the rotor surface is
described by

E = Eo cos 2k[Ut-(z-6)]

Both the rotor and stator are infinitely Fig. P4.13.2
permeable.

(a) What are the lowest order Hx and Hz in a quasi-one-dimensional model?

(b) Find the average force fZ on one wavelength in the form of Eq. 4.13.8.

(c) Compare your result to that of Sec. 4.3, Eq. 4.3.27.

For Section 4.14:

Prob. 4.14.1

(a) For the magnetic d-c machine described in Prob. 4.10.1, show that the quasi-one-dimensional fields
in the gap (based on a >>,4 are

N i nfif
H aaNa (z - 0 < z < (1)

x b 3X/2 - 2b

-H Nai -1) a< 2 (2)

(b) Based on these fields, what is the force on a length, 2k, of the armature written in the form

fz = - Gmifia?

(c) Write the electrical terminal relations in the form of Eqs. 4.10.17 and 4.10.21.
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