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6

Magnetic Diffusion and Induction
Interactions



6.1 Introduction

Except that magnetoquasistatic rather than electroquasistatic systems are considered, in this chap-
ter electromechanical phenomena are studied from the same viewpoint as in Chap. 5. Material deformations
are again prescribed (kinematic) while the magnetic field sources, the distributions of current or mag-
netization density, evolve in a dynamical manner that is self-consistently described throughout the
volume of interest. Most of the discussion in this chapter relates to magnetic diffusion with material
convection.

In practical terms, this chapter takes leave of the windings and associated slip rings or commu-
tators used in Chap. 4 to constrain current distributions in moving elements and takes up conductors in
which the currents seek a distribution consistent with the magnetoquasistatic field laws and the imposed
motion. The magnetic induction machine is an important example. Most often encountered as a rotating
machine, it might also have as a zioving member a "linear" sheet of metal or even a liquid. The study of
temporal and spatial transients and of boundary layer models in Secs. 6.9-6.11 is pertinent to the linear
induction machines, whether they be applied to train propulsion or manufacture of sheet metal. The
"deep conductor" interactions considered in Secs. 6.6 and 6.7 give insights concerning liquid-metal in-
duction pumping, a topic continued in Chap. 9.

The boundary conditions and transfer relations summarized in Secs. 6.3 and 6.5 are a basic resource
for developing analytical models representing systems suggested by the case studies of Secs. 6.4 and
6.6. Similarly, the dissipation and skin-effect relations developed in Secs. 6.7 and 6.8 are designed
to be of general applicability.

Much of the magnetic diffusion phenomena developed in this chapter, the mathematical relations as
well as the physical insights, pertain as well to the diffusion of molecules or of heat. Hence, divi-
dends from an investment in this chapter are in part collectable in Chap. 9. In addition, what in
Sec. 6.2 is a theorem concerning the conservation of flux for material surfaces of fixed identity, in
Chaps. 7 and 9 relates to fluid mechanics and becomes Kelvin's vorticity theorem. Diffusion of vorticity,
a momentum transfer process in fluids taken up in Chap. 7, has much in common with magnetic diffusion.

The conduction model in this chapter is exclusively ohmic. The model is especially appropriate in
the relatively highly conducting materials of interest if magnetic diffusion effects are an issue.
Typically, conductors are solid or liquid metals, or perhaps highly ionized gases. The development is
purposely one that parallels the sections on ohmic conductors in electroquasistatic systems, Secs. 5.10-
5.16. A comparative study of electroquasistatic and magnetoquasistatic rate processes, models and
examples results in the recognition of both analogies and contrasts.

Although resistive types of induction interactions are by far the most common, time-average forces
can be developed through phase shifts created by other types of loss mechanisms. The important example
of magnetization hysteresis interactions is used in Sec. 6.12 to exemplify not only how time-average
magnetization forces can be developed, but by analogy, how polarization interactions can be created in
an electroquasistatic context.

6.2 Magnetic Diffusion in Moving Media

For a material at rest in the primed frame of reference, Ohm's law is

JI= E' (1)

where the conductivity 0 is in general a function of position and time. This law, introduced in Sec. 3.3,
implies at least two charge-carrier species and a Hall parameter (Eq. 3.3.4) that is small compared to
unity. Use of the field transformations If = - (Eq. 2.5.11b) and E' = + v x poH (Eq. 2.5.12b) ex-
presses Eq. 1 in the laboratory frame of reference,

Jf = a(E + v x p) (2)

where v is the velocity of the material having the conductivity a. This generalization of Ohm's law to
represent conduction in a moving material is clearly valid provided that the material is moving with a
constant velocity. But the law will be used throughout this chapter for materials that are accelerating.
The assumption is made that accelerations have a negligible effect on the processes responsible for the
conduction, for example, in a metallic conductor, that the acceleration of the ponderable material has
a negligible effect on electronic motions.

Solution of Eq. 2 for E gives an expression that can be substituted into Faraday's law, Eq. 2.3.25b,
to obtain
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Vx f B + (
x =-- + V x (v •B) (3)

where the definition B E Vo(H + M) has been used.

The embodiment of Ohm's and Faraday's laws, represented by Eq. 3, has a simple physical signifi-

cance best seen by considering the integral form of these same laws. With E' replaced using Eq. 1,
Faraday's integral law, Eq. 2.7.3b, becomes

÷Jf + d
d-" dt B nda (4)

C S

Fig. 6.2.1

Surface of fixed
identity.

C S
In writing this equation, the surface S enclosed by the contour C, Fig. 6.2.1, is one of fixed identity
(one attached to the deforming material), so v = v . (The same expression would be obtained by inte-
grating Eq. 3 over a surface of fixed identity and applying the generalized Leibnitz rule, Eq. 2.6.4.)

According to Eq. 4, the dissipation of total flux linked by a surface of fixed identity is propor-

tional to the "iR" drop around the contour of fixed identity enclosing the surface. The statement is a
generalization of one representing an ideal deforming inductor having the terminal variables (X,i)
shorted by a resistance R:

dX (5)
iR =.

dt

Fig. 6.2.2

Circuit equivalent
to C in Fig. 6.2.1.

In the limit of "infinite" conductivity, the flux intercepted by a surface of fixed identity is invariant.

Equations 3 and 4 represent the same laws, so if the left side of Eq. 3 is negligible, it too implies

that the flux linking a contour of fixed identity is conserved. The circuit helps to emphasize that in

most of the chapter the subject is distributed "resistors" and "inductors" typified in their dynamics

by "L/R" time constants.

Ampere's law, Eq. 2.3.23b, eliminates If from Eq. 3 in favor of 1. With magnetization described

B = ýH, where 1i can be a function of space and time but not of H, Eq. 3 then becomes

Vx - (Vx B) = + V X (v X B) (6)

In regions where the properties (o,i) and material velocity v are uniform, Eq. 6 becomes the convective
diffusion equation*

i VB = ( + v.V)B (7)

pa St
On the right is the rate of change with respect to time for an observer moving with the velocity v of the

material (Sec. 2.4). This convective derivative represents two ways in which time rates of change are

experienced by a given element of material. Pprhaps created by a time-varying field source, at a given

fixed location there is a magnetic induction OB/atwith a rate characterized by a time T. Motion of the

material through a spatially varying field givs rise to a second magnetic induction contribution gener-

ally represented by the "speed" term V x (v x B) (Eq. 6) and particularly reduced to v.VB in Eq. 7.

This contribution is characterized by a transport time k/u, where k and u are respectively a typical

length and velocity. Parameters representing the competition between these two rates of change and the

diffusion process are identified by writing Eq. 7 in terms of the dimensionless variables

t = tt; v = vu; (x,y,z) = (x,X,z)k (8)

(v x B) v(V.B) - -(V.'*)V+ ;- V. 0VO,V.* = 0, Vv = 0

V x (V x B) V(V.B) - V2
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Note that either Eq. 6 or Eq. 7 is linear in B, so that the flux density need not be normalized. In terms
of these variables, Eq. 7 becomes

-I +
V2 mm + R vVB (9)

T at m

where

T = Pt2 : magnetic diffusion time

R = Oaut: magnetic Reynolds numberm

For 11,0 and v not uniform, Tm and Rm are defined using typical magnitudes of these quantities.

If the diffusion term on the left in Eq. 9 (in Eq. 4) is negligible, the dynamics tend to be flux
conserving. Thus, Tm/r and Em are dimensionless numbers, really representing the same ghysical process,
that are an index to the degree of flux conservation. If a process is steady so that aB/Dt = 0, thdn Rm,
which is the ratio of the magnetic diffusion time to a typical transport time i/u, is the appropriate
index. If Rm is large, material convection tends to dominate in determining the field distribution.

Few physical situations involve only one dimension. Usually, practical systems are heterogeneous,
in that they are made up of materials having different electrical properties each with its own dimen-
sions. As a result, a model may involve several different Tm's and Rm's. Identifying the most critical
diffusion times and magnetic Reynolds numbers is an art developed by having as background examples such
as those in the following sections.

Skin effect, a magnetic diffusion phenomenon, is conventionally characterized by the skin depth 6m.
As a parameter representing the extent to which a sinusoidal steady-state magnetic field diffuses into a
conductor, it embodies the magnetic diffusion time Tm . The extent to which the field diffuses into an
"infinite" conductor is itself the characteristic length £, while the characteristic time is the recipro-
cal of the imposed field frequency. In fact, setting Tm/T = i062w = 2 results in what will be identified
in Sec. 6.6 as the magnetic skin depth:

6 _ (10)

The skin depth is the length that makes the magnetic diffusion time equal to twice the reciprocal angular
frequency of a sinusoidal driving field.

Typical electrical conductivities for materials in which magnetic diffusion is of interest are
given in Table 6.2.1. For these materials, the magnetic diffusion time, Tm, is given as a function of
the characteristic length £ in Fig. 6.2.3 and the skin depth, 6, is given as a function of frequency
f = w/2w in Fig. 6.2.4.

Table 6.2.1. Typical electrical conductivities of materials in which magnetic diffusion
is of interest. Permeability is essentially Po unless otherwise stated.

Material Conductivity 0 (mhos/m)

Solids

Copper 5.80 x 107
4% silicon-iron 1.7 x 106 (p r 5000 1o)
Silver 6.17 x 107
Aluminum 3.72 x 107
Graphite 7.27 x 104

Liquids

Mercury 1.06 x 106
Sodium 1.04 x 107
Sodium potassium 22%-78% 2.66 x 106
Cerrelow-117 (tin-bismuth-

lead-antimony alloy) 1.9 x 10
Seawater 4 -6
Deionized pure water 4 x 10
Alumium 4.31 x 106 (8700C)
Tin 2.1 x 106 (231.90C)
Zinc 2.83 x 106 (4190C)

Gases

Typical seeded combustion gases ,.40
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Fig. 6.2.3. Magnetic diffusion time as a function
of characteristic length for solid copper,
liquid mercury and gas typical of that used
in MHD generator.

6.3 Boundary Conditions for Thin Sheets and Shells

Currents induced in a sufficiently thin conductor
can be regarded as essentially uniform over its cross
section. Some of the most important models for magnetic
diffusion exploit the resulting simplification of the
field representation. The magnetic diffusion process is
condensed into a boundary condition at the surface
occupied by the conductor, in Fig. 6.3.1, the surface
separating regions (a) and (b).

Because the conducting sheet is bounded from either
side by insulators, the current distribution is essen-
tially that of a surface current

10 I0 103 104I 105

f(Hz)

Fig. 6.2.4. Skin depth as function
of frequency for materials of
Fig. 6.2.3.

(a

Fig. 6.3.1. Conducting sheet having normal
flux density Bn, thickness A and hence
surface conductivity as - Aa.

The normal flux density is continuous, so it is denoted by Bn without distinguishing between regions (a)
and (b).

Ohm a law and Faraday's law are embodied in Eq. 6.2.3. For the present purposes, the normal com-
ponent of this equation is the essential one. Multiplied-by the sheet thickness, A, it becomes

4.n +B 4(Vx Kf) as [V x ( x B)]n
( fx n s t s n

Continuity of current (Eq. 2.3.26) requires that

V.K f =-0

where VE* is the two-dimensional divergence, the usual divergence with the vector component normal to
the surface omitted.

Secs. 6.2 & 6.3
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Table 6.3.1. Boundary conditions on conducting moving sheets and shells.
Normal flux density, Bn, is continuous and as E Au.

n 5

translating cylindrical shell

Either

r sine - sine + L H- = -asasine (•t + 0 )Br (d)

a s(a)i-D 2

or

rotating spherical shell sin sin + sa sin2 + )Br] (e)

Finally, the jump condition implied by Ampere's law relates gfto the fields (Eq. 2.10.21):

+ + +

These last three equations combine to provide a description of how the magnetic field diffuses through
conductors of arbitrary geometry. Four typical geometries and associated boundary conditions are sum-
marized in Table 6.3.1. The derivation of each of these conditions follows the steps now carried out in
Cartesian coordinates.

Translating Planar Sheet: In this case, Bn = Bx and v = Uiy. Then, Eqs. 2 and 3 become

aK aK aB B xz z = - as x-+U x)
Dy DZ J Dt + y

aK aK
S+ z = 0

ay 9z

Of the variables Ky and Kz, the latter is the more convenient. Hence, with the objective of eliminating
between these questions, a/ay is taken of Eq. 5 and a/az is taken of Eq. 6 to generate a cross

derivative that can be eliminated between these equations. Thus, Eqs. 5 and 6 become

Sec. 6.3

Configuration Boundary condition

v=U i X z

(a) - U 2 2

( + H aR - (- + U -)Bx (a)
tr znslt y p sy Ut y x

translating planar sheet

, 22 s a )B (b)
a De H2)e ' r

rotating cylindrical shell

S2 2
+ Ha (a-

a2De2 2 zs D t z r(c)



(2

y2 2 -)K= .D at + U a B
Dy) x

Finally, Eq. 4 is used to write Eq. 7 as the required boundary condition, Eq. (a) of Table 6.3.1.

6.4 Magnetic Induction Motors and a Tachometer

A developed model for the rotating machine, shown in Fig. 6.4.1a, is detailed by Fig. 6.4.1b. It
incorporates a stator structure much like that for a synchronous machine, for example the smooth air gap
machine of Sec. 4.7. The windings shown here however have two rather than three phases, backed by a
highly permeable magnetic material. The rotor also consists of a highly permeable material, but having
its windings replaced by a sheet of conducting material wrapped on its periphery.

What makes this an induction machine is that the rotor currents are induced rather than imposed by
means of windings and terminal pairs. The stator currents produce a magnetic flux density that has a
component normal to the conducting sheet. Application of the integral induction law and Ohm's law
(Eq. 6.2.4) to a surface lying in the plane of the sheet shows that circulating currents are induced in

the sheet. These tend to produce their own fields and hence limit the normal flux density in the sheet.
With the rotor assumed very long in the z direction compared to the rotor diameter, these sheet currents
are modeled as mainly z-directed, closing in circulating paths on perfectly conducting "shorts" at z=+±.

w

stator ... .

3se

(I) 0a)
Fig. 6.4.1. (a) Cross section of rotating induction machine with thin-sheet conductor on

rotor. (b) Developed model for (a) with air gap d and sheet conductor of thick-
ness a. One of two phases on the stator is shown.

Viewed in terms of lumped parameter models, the induction machine is often represented by a con-

servative electromechanical Coupling, such as developed for the synchronous machine in Sec. 4.7, with
the rotor terminals shorted by resistors. In fact, some induction machines are constructed with wound
rotors that can be connected to variable resistances through slip rings. However, most induction
machines are made inherently more rugged by letting the currents flow through solid conductors, not
windings. An important point made by the field representation used in this section is that the thin

sheet model is in fact equivalent to the lumped parameter model, provided that the rotor is modeled by

a properly distributed polyphase winding with equal resistances connected to each winding. But, if the
sheet has finite thickness, the circuit model is not equivalent, as will be evident in Sec. 6.6.

Two-Phase Stator Currents: There are two windings on the stator, each with a sinusoidal distribu-
tion of turns density. The "b" phase is displaced by 900 relative to the "a" phase. Because magnetic
induction depends explicitly on time rates of change, the description is one in terms of temporal complei
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amplitudes. Hence, the stator current is modeled as being the surface current,

K Re[iae N cos ky + ejWt Nb co k(y -)] (1)

where N and Nb are the peak turns per unit length on the respective phases and 2 is the wavelength in
the y-direction. For a two-pole rotating machine, a is the rotor circumference. The complex amplitudes
of the electrical terminal currents are (ia,ib).

By using Euler's formula, cos 6 = (ej e + e-j )/2, the cosines in Eq. 1 are written in terms of
exponentials so that the surface current takes the alternative form

K = Re[Kee j (wt-ky) + Se (t+ky)] (2)

where k)
A s 1^ A +k4
K - 2 (iN +N Nbe )

Thus, the excitation is written in the form of a complex amplitude Fourier series. This type of
representation is discussed in Sec. 5.16. In general, the series takes the form of Eq. 5.16.1. In the
case at hand, there are only two terms, n = 1 (k1 = k) and n = -1 (k-1 = -k), corresponding physically
to waves propagating in the + and -z directions.

The fields satisfy linear bulk and boundary equations. Hence, the response to Eq. 2 is the super-
position of the response to the first term and a response to the second, found from the first by simply
replacing iK + KS and k + -k.

Fields: Because the flux linkages aje to be computed, it is convenient to describe the air-gap
fields i- terms of the vector potential, A - Aiz, the Cartesian coordinate case of Table 2.18.1; thus,

x = -jkA. In view of the "infinitely" permeable stator and rotor materials, boundary conditions on

single complex amplitudes of the fields at the stator and rotor surfaces follow from.Ampere's law

(Eq. 2.10.21). The boundary condition at the stator is thus

Hs . _-K (3)
Y

and the composite boundary condition for the thin sheet, Eq. (a) of Table 6.3.1 with a/az - 0, is

a a
-A 5- - r) (4)

y k x k

Fields at the stator and rotor surfaces are related by the transfer relations (b) of Table 2.19.1:

s 1 s
A -coth(kd) sinh H

Ssinh(kd) y5)

k

r -1 coth(kd) fir
sinh(kd) y

With the objective of finding ^r, which by Ampere's law is the rotor surface current, these last three
equations are now combined. EGation 4 (solved for Ar) and Eq. 3 are substituted into Eq. 5b. This
expression is then solved for H :

K; Sm+[j + Sm+ coth(kd)]

H - 2 (6)
sinh(kd)[1 + Sm+coth2(kd)]

The dimensionless number Sm combines the ratio of a magnetic diffusion time Tm - poas/k to the character-
istic time 1/1 and a magnetic Reynolds number iooaU:

Po
Sm - a (W; kU) (7)

In writing Eq. 6, the components induced by the respective traveling waves of Eq. 2 are identified by

replacing KS * Ke and k - + k. Note that coth(kd) and sinh(kd) are odd functions.

Sec. 6.4



Time-Average Force: To determine the force of magnetic origin acting in the y direction on the
rotor, the appropriate volume of integration is as shown in Fig. 4.2.1a. The only contribution to the
integration of the stress over the enclosing surface comes from S1 , here taken as a surface adjacent to
the rotor. It then follows from Eq. 5.16.4 that the time-average rotor force is simply

[A r-r * r (8)
(fy> ( w) Re[BH ) + Bx (HY) 8)

where w is the rotor length in the z direction and p is the number of poles (the number of half-wave-
lengths). Hence, pX/2 is the total rotor length in the y direction.

In Eq. 8, " - +jkA , where A; follow from Eqs. 3 and 5b:

Ar o r K coth(kd) (9)
+ k Lsinh(kd) (9)

Thus, substitution for in Eq. 8 exploits the fact that self-fields can make no contribution to the

total force to express the force as an interaction between stator and rotor surface currents:

< - p shw"o Ra[j s( r )*i sfr ]* (10)
4 sinh(kd)

In terms of stator currents, Eq. 6 serves to evaluate this time-average force:

. p 0 [ S - 1 (11)
4 sinh2(kd) 1 + S(coth (kd) 1 + Scoth(kd)M+ M_

Balanced Two-Phase Fields and Time-Average Force: The stator currents become a pure traveling wave

if the (b) phase is made to temporally lag the (a) phase by 900, and the windings have the same peak

turns densities. Formally, this is seen from the definitions of Ks given with Eq. 2:

A Ae-jwr/2 As A
Sa aa (12)

Na Nb -

Only the first term in Eq. 11 contributes to the force. The dependence of this force on Sm is familiar

from the electroquasistatic analogue developed in Sec. 5.13. In Fig. 6.4.2a, the force is shown as a

function of the material velocity divided by the traveling-wave phase velocity w/k. Given the depend-

ence of the force on S , this plot is the result of first shifting the origin so that Sm+ - 0 where

w - kU and then "flipp ng" the plot about the vertical axis passing through this origin.

The parameter S+ is the effective magnetic diffusion time multiplied by the angular frequency

(w-kU) for an observer moving with the conducting sheet. The force is in the same direction as the

traveling wave, provided S is positive so that the traveling wave has a speed greater than that of the

material. To understand tie force-speed diagram, consider the phase relationship between stator and

rotor surface currents, implied by Eq. 6 (H K7). For near synchronism between traveling wave and

material, (i) typifies the operating point. In q. 6, small S implies the complex amplitude (i)

shown in the phase diagram of Fig. 6.4.2b. At a given instant, the rotor current spatially lags that

on the stator by slightly more than 900, as sketched in inset (i) of Fig. 6.4.2a. This current has

just the right distribution for producing a force to the right, but because S is small (the time rate

of change in a frame moving with the materials is small) the induced current Ts small. The magnetic

field is distributed essentially as if there were no rotor current. Increasing Sm improves the mag-

nitude of the current but at the price of compromising the relative spatial phase. The ultimate com-

promise between phase and magnitude comes at (ii) where Sm = tanh(kd). As Sm becomes large, currents
in the rotor completely shield out the normal magnetic field. The rotor current becomes as large as is

possible, but the spatial phase relation is wrong for producing a force in the y direction. Operating

point (iii) is approaching this condition, with the magnetic field approximating that for a perfectly

conducting sheet.

Electrical Terminal Relations: To compute the voltages (va,vb) required to produce the terminal

currents (ia,ib), the flux linkages (Aa,Xb) must be determined. For example, consider the (a) phase

of a two-pole machine. The windings carrying current in the z direction at y' and returning the cur-

rent at y' + 1/2 each link a magnetic flux (Eq. (f) of Table 2.18.1):
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(a)
Fig. 6.4.2. (a) Time-average force for induction

machine of Fig. 6.4.1 with balanced two-phase
excitation. Abscissa is material velocity
relative to wave phase velocity. The slip is
sm - S /(oo8w/k). Insets show spatial
phase of stator and r9tor currents at a given
instant. (b) Phasor r!,showing effect of in-
creasing Sm on the phase and amplitude. Oper-
ating points (i) + (iii) are shown in (a). In
nomenclature of lumped parameter induction
machines, (i) is resistance dominated operation
while (iii) is reactance dominated.

0 = w[AS(y') - AS(y' + £/2)]

Written as the superposition of the two field components, so that the dependence
expression becomes (k 27r/4)

S= wRe[A e j (at-ky') + j5ej(Wt+ky') - jAe jej(wt-ky') - jsejlre (wt+ky')

= wRe2(Ae-jkY ' + ASeJky')e j wt

on y' is explicit, this

(14)

In the interval dy' in the neighborhood of y = y' there are N cos ky' dy' turns, so the flux linked by
the (a) phase is altogether

X l /4 (y')Na cos ky' dy' wNaRe (ASejky + A~sekY')(ejky' + ejky')ewtdyl
-1/4 -£/4

Only the constant terms contribute to the integration, and substitution for A; from Eq. 5a gives

N(Hr +ArA

Sw-- P R e oth(kd)(s + ) + e
a =2 k o0 c K; + ) sinh(kd)

(15)

(16)

Remember that K are given functions of the terminal currents, Eq. 2. Thus, Hb are also given as
a function of the terminal currents by Eq. 6 and Eq. 16 is the required (a) phase teiinal relation
Aa(O ,ib). The Rame line of reasoning shows that Ab is given by Eq. 16 with Na + -jNb, Xf + K- i - Ka
and + + -

Sec. 6..4
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wN2 22
L1 EL 2 tanh ( -)

wN2 2 oP £wN2

a R a

4Tr sinh (--) 2s

kU
sm E "slip" = (1 - -) = Sm+/(1oas/k)

Balanced Two-Phase Equivalent Circuit: With
excitations as summarized by Eq. 12, the terminal
voltage on the (a) phase follows from Eq. 16 as

2aJ

va= j aj= j coth kd

R/Sm

Fig. 6.4.3. Equivalent circuit for balanced
operation of induction machine.

+ [j + S+coth(kd)] ] a+ kd(l+Scothkd)

sinh2kd(1+S2 coth2kd). aM+

(17)

This relation of voltage and current is the same as is obtained for the circuit of Fig. 6.4.3. The
parameter Sm+ , normalized to a magnetic Reynolds number based on the wave velocity c/k, is what is
conventionally defined as the "slip," m*.

Single-Phase Machine: With only the (a) phase excited, positive and negative traveling waves
result having equal magnitudes. According to Eq. 2,

ib =0
^s ^s 1
K = K - 2 Naia (18)

The time-average force, Eq. 11, is the superposition of the forces that would be induced by purely
forward and backward traveling waves. The resulting force-speed characteristic, sketched in
Fig. 6.4.4, is rigorously the sum of the time-average forces from the traveling-wave components. At
zero speed, these forces cancel. Provided the slope of the characteristic at zero speed is positive,
once started in either direction, the rotor experiences a force tending to further increase the velocity.
It follows from Eq. 11 that at U = 0 the slope is

ptwN2 iaj 2 k

8 sh 2kd8 sinh2kd

(4R coth2kd - 1)

(1 + 2 coth kad)
(19)

so the slope is positive, provided the frequency is high enough to make RM > tanh(kd).

Fig. 6.4.4. Time-average force for single-phase induction machine as function of material
velocity normalized to wave velocity. Total force is superposition of forces due to
forward and backward wave components.

Sec. 6.4
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In practice, single-phase induction machines are started by pole shading or by using a (b) winding
connected to the excitation in such a way that a temporal phase shift takes place, perhaps by a capaci
tor. Under start conditions. one force component then dominates the other. l

Fig. 6.4.5

Drag-cup tachometer with end cap and
attached magnetic core removed so that
thin-walled rotating cup is visible.
The core is the lower highly permeable
rotor material in Fig. 6.4.1, the cup
is the moving conducting sheet. C01ls
adjacent to the cup rim are the stator
windings. In this example the core is
actually fixed and there is an appreci
able air gap between core and cup.

Tachometer: One common way in which the induction machine sees application as a generator is for
speed measurement. As a rotating machine, the model pertains to the drag-cup tachometer shown in
Fig. 6.4.5. In linear geometry, the induction interaction might be used to measure the velocity of a
moving conducting sheet. Single phase excitation, say of the (b) phase, is equivalent to a standing
wave excitation. With no motion, currents induced in the sheet also form a standing wave in spatial
phase with the excitation. Material motion induces an imbalance in the forward and backward wave com
ponents. Thus, with no motion no signal is detected on the (a) phase, but with motion there is a sinu
soidal signal at the frequency w. The magnetic interaction exploited here is the analogue of that dis
cussed for an electroquasistatic interaction in connection with Figs. 5.13.3 and 5.13.4.

A AS _ -1 A

With single phase excitation of the (b) phase, i a = 0 and according to Eq. 2, K+ - + 2 ibNb • The
voltage on the (a) phase follows from Eq. 16:

va
A wwW Nbll l b ( S +

j WA = _ j a 0 ...--:-":"'J!!'"_m_-..,....-~
a 4k sinh2kd 1 + jSm+ coth kd

S
m-

1 + jS cothm-
(20)

As expected, the output voltage is zero if U = 0 (Sm+ = Sm-). The dependence of va on the velocity can
be used to measure U. For example, the amplitude of the output follows from Eq. 20 as

I~ Ia
2coth kd)

(21)

where
wwtN Nbll 11 (J i/

v0 - 2k sinh k~ CO~h kd ; Sm+ == T- (lJ)+ kU)

The analogy to the electroquasistatic tachometer of Sec. 5.13 is emphasized by the direct correspondence
between Eqs. 20 and 5.13.15, and between Eqs. 21 and 5.13.16. The dependence on U given by Eq. 21 is
illustrated by Fig. 5.13.5.

6.5 Diffusion Transfer Relations for Materials in Uniform Translation or Rotation

In terms of the vector potential X, discussed in Sec. 2.18, magnetic diffusion in regions having
uniform permeability and conductivity is described by Eq. 6.2.6 with ~ = Vx Xand V·X = 0:

1. For a description of induction machines in lumped-parameter terms, see H. H. Woodson and J. R.
Melcher, Electromechanical Dynamics, Pt. ~J John Wiley & Sons, New York, 1968, pp. 127-140; also,
A. E. Fitzgerald, C. Kingsley, and A. Kus~o, Electrical Machinery, McGraw-Hill Book Company, New
York, 1971, pp. 525-531; S. A. Nasar and I. Boldea, Linear Motion Electric Machines, John Wiley and
Sons, New York, 1976.
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V x [-V (V X A) + - v x (Vx )] 0 (1)

Because the curl of the gradient of any scalar, say -4, is zero, a solution to this equation is

1 Vx (V x A) + a vx .(V x ) - -V (2)

For a given material motion, this equation is linear in A so that solutions can be superimposed. The
inhomogeneous solutions resulting from the "drive" on the right can be added to the homogeneous solu-
tions satisfying Eq. 2 with 0 = 0. A vector identity* converts the latter equation to

1 V1 = - x (Vx ) (3)

where the vector Laplacian must be distinguished from its scalar counterpart (Appendix A). This section
is devoted to developing certain useful solutions to Eq. 3 in such a form that they can be used in
problem solving. The geometries to be treated, summarized in Table 6.5.1, are extensions of those
identified in Sec. 2.19, two-dimensional or symmetric configurations where the vector potential has a
single component.

Planar Layer in Translation: In ýartesian coordinates, with A = A(x,y)iz and the material moving
uniformly in the y direction, so that v = Ut1, Eq. 3 reduces to its z component, which is

1 V2A = +AUA (4)
Ia at ry

With solutions taking the complex-amplitude form A(x,y,t) = ReA(x)exp j(wt - ky), this equation reduces
to

d1 2 2 2(5
d 2 = O; Y2 ~ k + jpo(w - kU) (5)
dx

Transfer relations can now be deduced following the same line of reasoning used in preceding from

Eq. 2.16.13 to the relatlons of Table 2.16.1, or from Eq. 2.19.3 to the Cartesian relations of

Table 2.19.1. With (Aa,AO) the complex amplitudes at x = A and x = 0, respectively, the solution to

Eq. 5 is:

=A sinh yx 0AB sinh y(x-A) (6)
sinh yA sinh yA

Evaluation of Hy = -(1/li)dA/dx (Table 2.18.1) at x = A and x = 0 then gives the transfer relations,
Eqs. (a) of Table 6.5.1. Inversion of these relations gives Eqs. (b). Note that y = Yr + iYi in Eq. 6.
Thus,

sinh Yx = sinh(Yrx + jYix) = sinh yrx cos yix + j cosh yrx sin yix (7)

is a complex function. In computer libraries it is usually the circular rather than the hyberbolic

functions that are provided with the capability of having complex arguments. Then, evaluation is

accomplished by replacing sinh yx - -j sin jyx in Eq. 6.

The diffusion transfer relations are the same as those for a nonconducting region (Table 2.19.1),

except that k is replaced by y. The transverse wavenumber governs the manner and degree of penetration

of the field into the conductor, and is examined in Sec. 6.6. The transfer relations for a planar

region are applied in Secs. 6.6-6.8 and 6.10.

Rotating Cylinder: In a material suffering rigid-body rotation with the angular velocity 0, the

velocity is *- PrTe. For field dynamics not depending on z, the appropriate form is A = A(r,e,t)Ez,
the polar coordinate case of Table 2.18.1. Then, Eq. 3 reduces to its z component:

1 V2A - + (8)

Substitution of A = Rel(r) exp j(wt - me) reduces this expression to

V x (V x ) = V(V.) -V2

Sec. 6.56.13



d2- r 2+d - (Y2 + -)A = 0; = J.a(w - mn) (9)dr2 r dr

With the identification k2 + y2 , Eq. 9 is Eq. 2.16.19, Bessel's equation. The appropriate solution for
the cylindrical annulus shown in Table 6.5.1, with outer and inner radii at r = a and r = 8, respectively,
takes the same form as Eq. 2.16.25:

Sa [H1m(J0)Jm(jyr) - Jm(JYB)Hm(JYr)]
A=A

[H (JyB)Jm(jyca) - Jm(jyB)H (jyc)]

(10)

+ [Jm(jyta)H (Jyr) - Hm(jyct)J (Jyr)]
+A

[J (jya)H (jy) - H (jya)Jm(jy0)]

Evaluation of He = -(l/U)dA/dr (see Table 2.18.1) at the respective surfaces then gives the transfer
relations (c) of Table 6.5.1. Inversion of these relations results in Eqs. (d).

The entries appearing in these transfer relations are those used to represent Laplacian fields,
defined in Table 2.16.2, except that k is replaced by y. In modeling a configuration composed of two or
more regions having differing values of ja, it is necessary to distinguish among two or more values of y.
By agreement, if the third argument is simply k, it is suppressed. For example,

fm(x,y,k) H fm(x,y) (11)

so that the transfer relation entries introduced in this section are natural generalizations of those
introduced in Sec. 2.16.

Bessel and Hankel functions of complex argument bear much the same relationship to the real-argument
limiting cases as do the circular functions in Cartesian coordinates. Computer library functions that
allow complex arguments may be in terms of the Bessel function of second kind, Nm, in which case the
definition of the Hankel function, Eq. 2.16.29, is used to evaluate HHm . For the rotating cylinder, the
real and imaginary parts of the arguments are equal and, in this case, the Bessel and Hankel functions
are tabulated as the Kelvin functions:1

bermx + jbeimx Jm(eJ 3 /4x)

(12)

ker x + Jkei x2 H (ei3 r/4x)
m m 2 m

Axisymmetric Translating Cylinder: To complete Table 6.5.1, consider the annular shaped material
moving with a uniform velocity v =o in the axial direction under axisymmetric conditions. Then, the
appropriate vector potential is I = t;A(r,z,t) and Eq. 3 becomes

B 2

Substitution of A = ReA(r)exp j(wt - kz) results in an equation of the same form as the homogeneous part
of Eq. 2.19.9,

d21. + dA 2 1 A 2-2
+ dA 2 +-)A - 0; Y2= k2 + jla(w - kU) (14)

dr r

where k2 has been replaced by y2. Thus, the solution is Eq. 2.19.10 with k + y:

= A -A [H1(jyB)rJ1 (jyr) - J 1 (jYB)rH1 (jyr)]

[Hl (jYB)J l (jy a ) - Jl(jYB)H 1 (jyca)]

(15)
+A [J 1 (jya)rH1 (Jyr) - H1(jya)zJ 1 (jyr)]

+ A

[Jl(jya)H1 (jyB) - H1 (jya)J1 (jya)]

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, U.S. Government Printing Office, Washington D.C., 1964, p. 379 and pp. 430-433.
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The transfer Eqs. (e) of Table 6.5.1 follow by evaluating Hz = (1/pr)aA/Dr at the outer and inner radii.
Identities, Eqs. 2.19.12 and 2.16.26c, are used to write the entries in terms of previously defined func-
tions. The inverse relations are Eqs. (f).

6.6 Induction Motor with Deep Conductor: A Magnetic Diffusion Study

While also being of practical significance, the induction interaction considered in this section is
chosen to give insights concerning sinusoidal steady-state magnetic diffusion into the bulk of uniform
conductors. The model is similar to the thin-sheet developed model shown in Fig. 6.4, except that the
rotor conductor now has a finite thickness, a, that can in general be comparable to the effective skin
depth 6', to the wavelength 2rr/k of the imposed traveling wave of surface current on the stator and to
the air gap d. The revised cross section is shown in Fig. 6.6.1. With the understanding that various
stator configurations could be represented as in Sec. 6.4, the stator current is taken as a pure traveling

The configuration allows for an examination of
the thin-sheet model of Sec. 6.3 while also placing
in perspective the opposite extreme, the short skin-
depth model introduced in Sec. 6.8. The sinusoidal
steady-state driven response emphasized in this sec-
tion is also related to the temporal modes of the
system in Sec. 6.10.

In terms of the locations defined in Fig. 6.6.1,
boundary and jump conditions represent Ampere's law
(Eq. 2.10.21):

Ha = -ReRse j (wt-ky)

H
b = H

c

y y

H = 0
y

and continuity of magnetic flux density (Eq. 2.10.22),

K,= Re ks ex p j(tt-k y)
....... .............iiii i'i iii'''''''''''''''''.................................................jii~fiii~ji~.............................iiiiiiiiiii..... ....................i i............ . .................i;
.......... ....::

1 .,S, (b)
L10 ,~'U

a () (L,o-)
S (d)

.............. . ....rotor el.

-S3 .............. .......

z y

Fig. 6.6.1. Induction machine with rotor con-
ductor having finite thickness a.

Bb = B
c Ab = Ac

x x

Identification of the bulk relations (b) of Table
conducting layer, gives

A a -coth(kd)

k k
b ^b -1

A B
x sinh(kd)

6.5.1, first with the air gap and then with the

sinh(kd) +

^b
coth(kd) L HyJL7

-coth(ya) sinh Hib

-1
-i coth(ya) 0

sinh(ya)

In writing these expressions, the jump and boundary conditions have been inserted. These four equations
determine the complex amplitudes (Ba, Bb, Bd, Hb) in terms of the stator surface current density. Before
proceeding, it is prudent to determine which amplitude is required.

Time-Average Force: With a pure traveling-wave excitation, the time-average force per unit y-z area
is independent of y. This is true because, except for a temporal phase shift, each "slice" of the mate-
rial, shown in Fig. 6.6.1, is stressed by the same fields. Formally, this force per unit area is found
by integrating the stress tensor over the surfaces S1...S 4 shown in the figure. The sum of these sur-
faces is like that of Fig. 4.2.1a, except that its extent in the y direction is arbitrary; it is the
time-average rather than the space-average that is being taken. With the understanding that z + t, the
complex-amplitude averaging theorem, Eq. 2.15.14, is applicable. The time-average stress integrated

Secs. 6.5 & 6.6
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I

over surface S2 cancels that integrated over surface S4. The fields on S3 are negligible,

b1A~h -4k *Ahb4vg

T = S Re[(Be J) H e IJ
S/t y

and, as expected, the y dependence is eliminated. To eliminate the self-field term from this equation,
Eq. 5b is substituted for Bb:x

S j(K*ib,]
/T Re

YT

Thus, it is Hb that is required and so Eqs. 5b and 6a are equated and solved for fib:
y y

-K.
H-Y

sinh(kd) ~ - coth(ya) + coth(kd)

Substitution of this expression into Eq. 8 then gives
of the stator surface current:

=--2 2 Re
t sinh2(kd) F.ka[l coth(ya) + coth(

where SM F poa2 (w - kU). With a balanced two-phase ex

rents by 6.4.2 and 6.4.12.

The dependence of the time-average
force on SM, the normalized frequency
as measured from the rotor frame of
reference, is illustrated in Fig. 6.6.2.
The function is odd in SM . If the mate-
rial velocity U exceeds the wave-phase-
velocity w/k, so that SM is negative,
the sign of the force is negative.

The dependence -is somewhat similar
to that for the thin-sheet interaction
of Sec. 6.4 (see Fig. 5.13.2). A quali-
tative difference is that the deep-con-
ductor force falls off less rapidly with
increasing rotor-frame frequency than
does the thin-sheet force. Two obser-
vations point to the origins of this dif-
ference. First, for SM exceeding 2, the
skin depth based on the rotor frame fre-

quency, 6' E /2/ij-kU'loa a 2/ISMI, is '-
shorter than the conductor thickness. In
the thick-conductor model, currents re-
distribute themselves in such a way that
the effective L/R time constant remains
on the order of the rotor-frame frequency
(see discussion accompanying Eq. 6.2.10).
Second, it is shown in Sec. 6.10 that
whereas the thin-sheet model embodies a
single natural temporal mode, the deep-
conductor model retains an infinite
number of such modes. At high frequencies, Fig. 6.4

a spectrum of these contribute to the sinu-

soidal driven response, and tend to broaden
the frequency dependence of the force.

the time-average force per unit area as a function

(10)- ; ya

I]
:citation, K+ would be related to the terminal cur-

0 2 4 6 8 10
SM b

6.2. Time-average force/unit area acting on deep

conductor in direction of traveling wave. ka=kd=1,
P=P . The force is an odd function of SM -

p•aZ (w - kU). The broken curve is the high-fre-
quency asymptote given by Eq. 11.

The high-frequency limit of Eq. 10 is
taken by recognizing that if ISMI >> (ka)2 , then ya + (1 + j ISMb/2, where the upper and lower signs

pertain for SM positive and negative, respectively. As the magnitude of ya becomes large, coth(ya)l.

Sec. 6.6
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Thus, Eq. 10 becomes approximately

tI' 2 (ak)-/ j

o 'V(11)
<Ty>t= 2 sinh2 (kd) [(ak) L+ /I S• 2 coth(kd)] 2 + [ / 2 coth(kd)]2 (11)

This high frequency approximation is represented by the broken line curve of Fig. 6.6.2. Because of the
skin effect, in this high-frequency limit, the force is inversely proportional to the square root of the
rotor frequency. By contrast, in this limit with the thin-sheet model (represented by the first term in
Eq. 6.4.11), the force varies inversely with the frequency.

Thin-Sheet Limit: What approximations are implicit to the thin-sheet model of Sec. 6.4? This is
tantamount to asking what approximations are necessary if the thin sheet force for a pure traveling wave
(the first term in Eq. 6.4.11) is to adequately approximate Eq. 10. It is clear from Eq. 10 that there
are two measures of the conductor thickness a, one the quantity (ka) which is small compared to unity if
a < A/2f,where X is the wavelength of the spatially periodic excitation. The other is ya (Eq. 10), which
can alternatively be written in terms of a skin depth 6' based on the rotor frequency,

(102.- 2a-kUI Sl/2 (12)
Ya = /(ka)2+ JSM = A(ka)2 + 2j(-) 2 ' E 2 kU = a// /2 (12)

In order for lyal < < I, there are therefore two requirements, and these are the fundamental approximations
validating the thin-sheet model:

ka << 1; -- >> 1 (13)
a

With these approximations, coth ya - 1I/ya and Eq. 10 can be written in the form of the first term in
Eq. 6.4.11. Note that SM = (ka)Sm. In the limit (ka) << 1, these expressions are in fact identical.

Conceptualization of Diffusing Fields: With the objective of picturing the space-time evolution
of the fields in the conducting layer as a function of 6'/a and ka, remember that all fields have been
represented in terms of

A = ReA(x)e j ( wt - ky) = Re 1A(x) e[Wt - ky + 0(x)] (14)

where A(x) in general is given by Eq. 6.5.6, and in particular for the configuration considered in this
section (where Hy(0) = 0 and hence dA/dx(0) = 0) is

S. cosh(yx) IA(x) Ie e (x) (15)
cosh(ya)

This expression can be deduced formally by manipulating the complex amplitudes, but is just as well found
by inspection. From Eq. 15, the field intensity in the conductor follows from H = Vx't/P (Table 2.18.1),
and the current density is

J= V1 V SZ 1 d2 2k2-A (16)
1 1 a dx2

or in particular, because -j = exp(-jW/2)

S ja( - k) cosh ) = - j (x) e j (17)

P coshya -j - A(x) Pa

Of course, Ac is determined from Eqs. 5 and 6 by the stator surface current density, but for the present
purposes it is just as well to think of Pc as imposed at the air-gap surface of the conducting layer
(at x = a). The amplitude and phase of A(x), defined by Eq. 15, are then typified by the distributions
over the conductor cross section shown in Fig. 6.6.3. At any given plane x = constant in the conductor,
the fields take the form Rf a sinusoid traveling in the y direction with the phase velocity m/k. The
amplitude of this wave, IA(x) , varies with distance into the conductor as shown in Fig. 6.6.3a. (Note
that there is decay of the field in the -x direction even if 6'/a -* -. This is simply the decay char-
acterizing Laplace's equation in free space. For the plots, ka = 1.) Points of the same phase on the
traveling sinusoidal wave, say of phase 80, have the space-time relationship

ky = wt + 8(x) - 00 (18)

That is, for values of y given by Eq. 18, the exponential in Eq. 14 becomes exp j0o, a complex constant.

Thus, at any instant, the plot of 8(x) shown in Fig. 6.6.3b is equivalent to the (x-y) distribution of

Sec. 6.66.17



IAl/I l e(rn)

(a) (b)

Fig. 6.6.3. Amplitude and phase of A = RelA(x)Iexp j(&t - ky + 6(x)j for fields diffusing through
conductors of Fig. 6.6.1. The parameter is the skin depth, based on the material frame
frequency, normalized to the conductor thickness, 6'/a;ka = 1.

the points of a given phase on the sinusoidal traveling waves. For example, when t = 0, an x - y plot
of the zero crossing for a co-sinusoid is given by Eq. 18 with 8o = •r/2.

The distribution when t = 0 is now readily visualized in terms of the
Fig. 6.6.3. As an example, Fig. 6.6.4 shows the distribution of A when t =
shows, the time dependence is seen by simply letting this picture propagate
velocity w/k.

amplitude and phase plots of
0 for d'/a = 0.2. As Eq. 18
to the right with the phase

Fig. 6.6.4.
with
wave
with

Magnetic diffusion wave distribution A across conducting layer of Fig. 6.6.1
pure traveling wave of excitation. For fields shown, phase velocity w/k of
exceeds material velocity U. As time proceeds, picture translates to the right
phase velocity c/k.
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The decay is of course least when the skin depth is largest, assuming a limiting value consistent
with Laplace's equation. In this limit, the contours of constant phase in the x-y plane become parallel
to the x-axis.

In the thin-sheet model, the Laplacian decay is negligible (ka << 1) and the skin depth is large
enough compared to (a) that the amplitude and phase are essentially uniform over the cross section.

In the opposite extreme where the skin depth is short compared to the conductor thickness, there
is little effect reflected back into the layer by the highly permeable backing material at x - 0. In
this limit, the traveling wave leaves a trail of magnetic field in the conductor that appears at any given
y plane as a rapidly attenuating wave with phases advancing in the -x direction.

For the picture shown, SM > 0, meaning that the wave velocity exceeds that of the material. If the
material moves faster than the wave, SM < 0, and the sign of the imaginary part of y is reversed. This
reverses the sign of the phase shift. The lines of constant phase in a field picture like Fig. 6.6.4
now run to the right with increasing y rather than to the left. This is true even though the wave
velocity w/k is still to the right. To make this observation consistent with intuition, note that the
material is moving even more rapidly to the right than the wave.

To emphasize the effect of the material motion, consider a thought experiment in which all param-
eters are fixed while the material velocity U is increased, starting at zero. At zero velocity, the
picture is as in Fig. 6.6.4, with the skin depth determined by the imposed frequency w alone. As the
velocity is increased, the skin depth 6' increases. Hence, the decay and phase shift are reduced. At
synchronism, the skin depth 6' is infinite, the decay is Laplacian and there is no phase shift. Further
increase of the velocity results in a positive phase shift and a decreasing skin depth. The picture
returns to that typified by Fig. 6.6.4, except that the constant phase lines "stream ahead" of the
traveling wave.

The short skin depth approximation is the basis for a far-reaching boundary layer model, discussed
in Sec. 6.8.

6.7 Electrical Dissipation

Induction interactions of the type exemplified in Sec. 6.6 involve electromechanical energy conver-
sion at somi price of electrical power converted to heat. In fact, one of the most common applications
of induced currents is to the efficient electrodeless production of heat in the volume of a conducting
material. But, even where the objective is electromechanical energy conversion, the heating is likely
to be a significant consideration. In this section, general relations are derived that can be applied
to any situation in which the canonical conducting layer of Sec. 6.5 is embedded.

Some preliminaries are required to have a way of representing power dissipated in terms of quan-
tities evaluated at the surfaces of the layer. The magnetoquasistatic form of Poynting's theorem,
Eq. 2.13.16 with terms given by Eq. 2.14.16, is written in the inertial (primed) frame moving with the
material:

(El') - a1 1 jjj) = (1)

Magnetization has been taken as linear, po((' + M') - pH'. For purposes of physical interpretation,
note that the integral of this expression over a volume V' enclosing material of fixed identity takes
the form of Eq. 2.13.12. This expression states that the total flux of power across the surface and
into the volume either goes into increasing the total energy within the yolume or it leaves the magneto-
quasistatic subsystem in a way represented by the term on the right. In general, power can either
leave as mechanical work done through the action of the magnetic force on the moving material, or it
leaves as electrical dissipation. Because there is no velocity of the material in the frame for which
Eq. 1 is written, the term on the right cannot include power flow into the mechanical subsystem. It
must be the electrical dissipation density Pd*

For the present purposes, what is required is an integration of Eq. 1 over a volume that is fixed
in the laboratory frame. Thus, Eq. 1 is rewritten in terms of fixed frame variables. That is, in
accordance wilh EQ 2.5.2, V' + V and D( )/at'+ a()tat + *V( ). Also, because the system is magneto-
quasistatic, H' = H (Eq. 2.5.9b). Thus, Eq. 1 is equivalent to

P = - [V(E x H) + - ( HH)+ vV(-1 2HH)

e s
Because v is uniform, and hence V.v = 0, the energy convection term can be taken inside the divergence:

P- _V. (t,Xý+vIfJIM) 1 (3)
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In the sinusoidal steady state, the time rate of change makes
no time-average contribution. This expression therefore makes it
possible to evaluate the electrical power dissipated by evaluating
fields on the enclosing surface. Consider again the planar layer
of material described in Sec. 6.5. It is embedded in a system that
is periodic in the y direction and is in the sinusoidal steady state.
The volume over which the electrical dissipation is to be found has
the fundamental length of periodicity in the y direction and has y-z
surfaces denoted by a and a adjacent to the upper and lower surfaces
of the layer (Fig. 6.7.1).

The fields are presumed to be generally represented in terms of a Fig. 6.7.1. Control volume fixed
Fourier complex-amplitude series, in the form of Eq. 5.16.1. Inte- in laboratory frame with
gration of the time average of Eq. 3 over the volume is converted
by Gauss' theorem to an integration of the quantity inside the diver- fundamental periodicity
gence over the enclosing surface. Because of the periodicity, contri-
butions to surfaces cutting through'the layer, surfaces S2 and S4 and
those in the x-y plane, cancel or are zero. It follows from the averaging theorem, Eq. 5.16.4, that the
integration over the surfaces S1 and S2 is evaluated by multiplying the area A of Sl or S3 by the spatial
average

1 1 40 A A* A A

1 f <PdtdV = Re l(E HE,) - (E'Hy )] (4)
yt 'VX 2 zn yn zn yn

Thus, the power dissipated over the cross section of the material within a volume having unit area in
the y-z plane is evaluated in terms of complex amplitudes at the bounding surfaces. It is convenient
to replace El with variables already used in the transfer relations. By Ohm's law, Eq. 6.2.1 and
Eq. 6.6.16,

A _J 1 2 2

za Ia dx2

This expression is expressed in terms of the surface variables using Eq. 6.5.6 and the result evaluated
at the respective surfaces. In view of the definition of y2 , Eq. 6.5.5,

= -j(w - kU) (6)

Thus, Eq. 4 can also be expressed as

+m (w - k U) ^ ^c * ^ (7)
Sd = - Re E 2 [An H -) A(7)

t n=- n yn n yn

This is the required time- and space-average power dissipation per unit y-z area in the layer. Similar
relations can be derived for the other configurations of Table 6.5.1. Application of Eq. 7 is made in
Sec. 6.8.

6.8 Skin-Effect Fields, Relations. Stress and Dissipation

In the short skin-depth limit, the planar layer of Table 6.5.1 becomes representative of all of the
configurations in that table. The skin depth 6' is identified by writing y (defined with Eq. 6.5.5) as

y - k2 j2/(6') 2 . > U; 6' -2 (1)
k < - kUli~a

Note that the frequency that determines 6' is that experienced by the material; hence the appendage of
a prime.

There are two approximations inherent to the model. First, the induced fields dominate over the
"reactive" fields in determining the decay into the conductor:

(1 + j)
k6' << 14 y 6' (2)
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A ky= wt+(x-a)/- o +Ak8

/k= wtýx/ '_
U

y- t IN
Fig. 6.8.1. Lines of constant phase move to right with velocity w/k. For W/k exceeding U, these

lines form a "wake" to the left, as shown. If material velocity were to exceed w/k, lines
would slant to the right. Amplitude decays into material as shown, with depth for attenua-
tion by e-l equal to 6'.

Essentially, the skin depth is short compared to the wavelength of periodicity (divided by 2rr).

Second, the skin depth is short compared to the thickness of the conductor:

IAl >> 1 (3)

Then, the fields represented by the vector potential, Eq. 6.5.6, become two independent rapidly decaying
waves confined to the respective surfaces:

+ (x-A) +x[j j(wt-ky - -- ) + -(x/6') j(Wt - ky (4)A=ReLe e +ABe-(x/ e (4)

These fields are of course a limiting case of the example depicted by Figs. 6.6.3 and 6.6.4. In the

short skin-depth limit, the lines of constant phase, sketched in Fig. 6.8.1, are exactly straight
lines. It is assumed in the sketch that the wave phase velocity w/k exceeds the material velocity U.

Transfer Relations: In the short skin-depth limit summarized by Eqs. 2 and 3, the planar layer
transfer relations take a form representative of all of the configurations of Table 6.5.1. The mutual

coefficients tend to zero as the thickness becomes large compared to 6', so that the short skin-depth

transfer relations are

1A -1 0
=-jk .(+_l - j)ky6' k U (5)

x y
According to these relations, in a frame of reference moving with the material, the fields diffuse into

the conductor as though they were independent of y. That is, if the y component of the magnetic dif-

fusion equation is written (Eq. 6.2.7), the contribution of the y derivative to the diffusion term is

negligible compared to that from the x derivative. Thus, consistent with Eq. 5 is the approximation

that

S2
H

S = ( + U()H (6)
a x2 ' y y

where the convective derivative on the right is the time rate of change for an observer moving with the

material. If there were actually no y dependence, there would be no Bx . This is evident from the

limit k + 0 of Eq. 5. But, once having solved Eq. 6 to obtain Hy, the normal flux density can be found
from the fact that B is solenoidal. The result would be Eq. 5. From a frame of reference moving with

the conductor, short-skin-depth magnetic diffusion is as though the fields were independent of y.

Stress: But, without some y dependence there is no Bx and hence no magnetic stress. To compute

the stress, the layer is enclosed by a control volume with surfaces as shown in Fig. 6.7.1. The force
follows from an integration of the stress over this surface (as described in Sec. 4.2). The time-
average force per unit y-z area tending to propel the slab in its direction of motion is found by

Sec. 6.8
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I

applying the time-average theorem, Eq. 5.16.4:

<BTyxBH - B!HYt = Re nZ--n - B' H n (7)

Evaluated using Eq. 5, this expression becomes

+.

1 nE - Vk6V'(IH I2 + IH n2) (8)4 yn yn

For a given available magnetic pressure, PH , the shearing force is proportional to the skin depth and
the wavenumber of the traveling wave.

The force in the x direction might be used to levitate a layer or system of layers. Suppose that
the layer is surrounded by free space, where p - p.. In general the space-time average is then written
in terms of quantities that are continuous across ehe surface as

T - - (Bx)- (H _-ý 2 (B y (9)<Txt= B) 2 (H>)2] - (Bx) 2 - (H)2

Because the x component of i is of order (k6) smaller than the y component, this expression is con-
sistently approximated by Bx. 0 and hence

xtn -[t2 +n n2] (10)

In the short skin-depth approximation, the normal torce is simply the available magnetic pressure as it
would exert itself on a layer of perfectly conducting material. In spite of the fact that the layer can
be highly permeable, in the short skin-depth limit, the magnetic field "pushes" on the layer.

Dissipation: The power going into heating of the layer is computed in terms of the same surface
variables as used to express the stress by applying Eq. 6.7.7. Evaluated using the short skin-depth
transfer relations, Eqs. 5, it becomes

1d (t2 + II 2) (11)

For a given magnetic pressure, the power dissipation is inversely proportional to the skin depth. Hence,
as the skin depth decreases, the heating increases and (from Eq. 8) the propulsion force decreases.

6.9 Magnetic Boundary Layers

An alternative title for Sec. 6.8 might be "magnetic boundary layers in the sinusoidal state." In
essence, the skin-effect model is based on the same boundary layer approximation used in this section.
Transverse magnetic diffusion dominates over that in the longitudinal (y) direction. Thus, in the mag-
netic diffusion equation, Eq. 6.2.7, the diffusion term is approximated by the second derivative with
respect to the direction of field penetration, the x direction. With the conductor moving uniformly in
the y direction, diffusion is therefore again governed by Eq. 6.8.3:

82H
1( + U ,)Hy (1)

where it is presumed that 3( )/zz 0. Once the longitudinal field, H , is determined, the transverse
field is determined by the rate-independent condition that the field bi solenoidal:

aB aH
Sax-- (2)

The configuration of Fig. 6.9.1a is used in this section to illustrate the implications of the
model. A relatively thick conductor moves to the right with velocity U. Just above the conductor, a
fixed structure (perhaps windings driven by a current source) imposes a uniform current density Kz--H oto the right of y - 0. This sheet is backed by an infinitely permeable material which extends over all
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x < 0
moving in y direction with uniform velocity U. Region x > 0

•( ) is "infinitely" permeable "stator" material. (b) Structure
on "stator" imposes magnetic field Hy(x=0) = Ho, which is
turned on over region y > 0 when t = 0.

of the region x > 0. Because the distance between sheet and conductor is small compared to other dimen-
sions of interest, the boundary condition imposed on Hy at the conductor surface is that it be Ho to the
right of y = 0 and that it vanish to the left. When t = 0, the current excitation is turned on. A sum-
mary of the space-time dependence imposed on Hy at the conductor surface is given in Fig. 6.9.1b. What
are the implications of the boundary layer approximation for the evolution of Hy in the moving conductor?
How can the boundary layer model be used to compute the drag and lift on the excitation structure?

One of the more dramatic of many practical and proposed applications involving a magnetic diffusion
process having the nature of that considered here is shown in Fig. 6.9.2.1 The structure is in that case
a magnetically levitated train and the conducting material the "rail." The y coordinate measures dis-
tance relative to the vehicle. From this frame of reference, the turn-on transient settles into a steady
state in which the current imaging that on the structure in a given conductor element penetrates into the
conductor to a depth determined by the time elapsed since the element passed the leading edge of the
structure.

The convective derivative on the right in Eq. 1, the time rate of change for an observer moving
with the velocity U of the conductor, can be written in terms of time t' measured from the reference
frame of a material element (see Secs. 2.4 and 2.5):

1 a2H

0 2 - at'ax

with a( )/at' defined as the partial derivative holding y' = y-Ut constant. The lines of constant y',
shown in the y-t plane of Fig. 6.9.1b, have intercepts (yo,to) respectively with the positive y and t
axes. These parameters both denote the constant y' and distinguish between those lines in regions I and
II of the y-t plane separated by the line y = Ut:

Ut + yo; y > Ut, region I

U(t - t ); y < Ut, region II

From the material frame of reference, the magnetic diffusion represented by the boundary layer
equation, Eq. 3, is one-dimensional. Only the time dependence of the boundary condition on Hy at x=O
reflects the temporal transient. For the particular excitation shown graphically by Fig. 6.9.1b, Hy is
a step function that turns on when t = 0 so long as y > Ut. Physically, material elements having a dis-
tance from the leading edge greater than the transit time Ut, see a uniform magnetic field applied when
t = 0. But, for y < Ut, an element experiences a step that turns on when t = to. This is the time when
the element passes the leading edge of the structure at y = 0. These general remarks pertain regardless
of the details of the field excitation, once it is turned on. For example, the excitation might be a
traveling wave confined to y < 0 and turned on when t = 0.

Here, discusson is confined to an excitation that is constant for t > 0 and y > 0.
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coils

Fig. 6.9.2. Magneplane vehicle and "rail." Levitation results from interaction between conducting
rail and magnetic fields from d-c excited superconducting coils mounted on vehicle. Currents
are induced in rail by relative motion. The same d-c fields interact in synchronous fashion
with traveling wave of magnetic field on center section of "rail" to provide propulsion.

1

Similarity Solution: Can x and t' be related so that Eq. 3 becomes an ordinary differential equa-
tion? With t' understood to be the elapsed time since the field was turned on, it is expected that the
field would have penetrated in the x-direction to a depth A typified by setting the magnetic diffusion
time (defined with Eq. 6.2.9) equal to t' and solving for tie length

m (5)

Thus, it is reasonable to scale the actual distance x to this length with a factor of 2 introduced to
make the resulting equation assume a standard form

S- v (6)

The conjecture is that the field intensit found at x = x, when the elapsed time from turn-on is t' = t 1
will be the same at time t where x = xl't/tl. Evaluation of the derivatives in Eq. 3 justifies the
supposition by converting the equation to

d2H dH
+ 2 d_ = 0 (7)

In spite of the coefficient that depends on 5, this equation has a simple solution satisfying the bound-
ary condition Hy( = 0) = Ho,

2
H = H[l1 + erf(S)]; erf _ 2 Je• dý (8)

as can be seen by direct substitution. The error function,2 erf(E), is normalized so that erf(E) - -1
as E + -

In applying Eq. 8, it is necessary to distinguish between regions I and II of the y-t plane,
Fig. 6.9.1b. In region I, the elapsed time since turn-on of the field is simply t'=t. Hence, Eq. 8

1. See H. H. Kolm and R. D. Thornton, "Electromagnetic Flight," Sci. American 229, 17-25 (1973).

2. Jahnke-Emde-Losch, Tables of Higher Functions, McGraw-Hill Book Company, New York, 1960, pp. 26-31.
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Fig. 6.9.3. Diffusion into moving conductor of magnetic field generated by current sheet Kz=-Ho
to right of y = 0 backed by highly permeable material and turned on when t = 0. Field
has stationary profile to left of y = k = Ut and profile that is independent of y but in-
creasing its penetration with time to right of y = Ut. The plots show penetration of field
at y = 0.25k and y = E with Rm .ioUe = 100. Note that magnitude of Hx is much less than H y

X
17

.03

with ý defined by Eq. 6 with t' + t gives the x-t dependence of Hy.
Fig. 6.9.3 illustrates the x-t dependence implied by the similarity
of this location, so to the right the field is independent of y and
with time.

The plot of Hy for y = Z = Ut in
solution. Region I is to the right
increasing its depth of penetration

In region II, between the leading edge and y = Ut, the. elapsed time t - to follows from Eq. 4b as
t' = y/U and hence from Eq. 6

x iaU
iVy

With this parameter used in Eq. 8, it is clear that the field in region II is stationary, with the role
of t replaced by y/U. Thus, in region II, the boundary layer grows in thickness with increasing y but
remains constant in thickness at a given y. As time progresses, the front between the stationary field
of region II and the temporally evolving field of region I moves to the right so that finally the sta-
tionary condition prevails. Of course, at some distance Z, the depth of penetration may be large
enough to bring the finite thickness of the conductor into play. Alternatively, the length k may reach
the length L of the structure used to impose the field. In this latter case, a second boundary layer
could be used to describe the field decay for y > L. The simple causal relation between excitation and
downstream response can be traced to there being no longitudinal diffusion included in the boundary-
layer model. There is no bow-wave in front of the leading edge and conditions downstream from the
region of interest have no influence.

Normal Flux Density: To find the drag force on the conducting layer, the distribution of Bx is
required. With Hy given by Eq. 8, it follows from Eq. 2 that

0
ýB
x

*ýx PH o IJH L a

Y

; y > Ut

x2 qaU

xe ; 0 < y < Ut

(10)
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.Holdiný y constant, this expression is integrated from x = -m (where Bx must vanish) to x to obtain

(fxe-ax dx = e-ax2dx2

0 ; y > Ut

x _2 (11)
BxV {je--; 0 < y < Ut

This distribution of B, is also sketched in Fig. 6.9.3. Note that at the conductor surface, Bx =
oV/-Ai, where the magnetic Reynolds number R, = paUy is based on the distance from the leading edge.

The boundary layer model is only valid if Am << y, and in Region II this is equivalent to Rm >> 1.
Thus, in.the boundary layer approximation, Bx is much less than pHo . As the boundary layer thickens
in region II, the total magnetic flux in the y direction (which is proportional to pHoAm) increases.
Thus there must be a flux of Bx into the boundary layer from across the conductor surface and this is
why a positive Ho implies a negative Bx.

Force: To find the total force on the conductor, the Maxwell stress is integrated over a surface
enclosing the conductor and passing between the conductor and the structure in the x = 0 plane. The
only contribution to the integration comes from this latter surface. Thus, the x-directed force on the
conductor (the negative of the force tending to levitate the structure)due to a structure of length L
and width w in the z direction is

f =w 1 ( H ) dyx o 2 x y (12)

In the boundary layer approximation, Hx<<Hy. Therefore, consistent with this approximation is a normal
force that is simply the product of the area of the conductor exposed to the magnetic stress and (½ poH20).

Because region I has Bx 0 and hence no shear stress, the force in the direction of motion is
simply

fy =w [BxHy]x=0dy -2Ho U (13)

During the turn-on transient this drag force increases in proportion to k = Vj' until X reaches the
full length L of the structure. Thereafter, the force is constant, given by Eq. 13 with k = L. With
Rm again defined as Rm = PoUL, this steady-state force can also be written as

f = -2UH 2Lw/-RR (14)

to make it clear that the final drag force is inversely proportional to the square root of the magnetic
Reynolds number based on the length of the interaction region. From Eq. 14 it is clear that in the
boundary layer limit, only a small fraction of the available magnetic stress, 11oH2, contributes to the
drag force.

6.10 Temporal Modes of Magnetic Diffusion

Temporal transients initiated from a state of spatial periodicity are introduced in Sec. 5.15.
Just as that section revisited charge relaxation examples treated under sinusoidal steady-state con-
ditions earlier in Chap. 5, this section returns to the configurations considered in Secs. 6.4 and 6.6.
Analogies and contrasts between natural temporal modes of magnetic diffusion and charge relaxation are
drawn by comparing the two magnetic configurations of this section to the corresponding electric pair
from Sec. 5.15. It will be seen that there is a rather complete analogy between the thin sheet models.
However, whereas a smoothly inhomogeneous conductor is required to give rise to an infinite set of
natural modes in the charge relaxation bulk conduction model, here a uniform conductor is found to
involve an infinite set of natural modes of magnetic diffusion.

Thin-Sheet Model: The natural frequencies for the system shown in Fig. 6.4.1 are given by setting
the denominator of Eq. 6.4.6 equal to zero with jW + sn:

D(-jsn,k) = sinh kd(-j + Sm coth kd) = 0 (1)
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Only Sm+ - Sm is considered in this expression because, in Eq. 1, k can be
negative as well as positive. Solved for sn, Eq. 1 becomes

s = +jkU - (T tanh(kd)

( ks/

The thin-sheet model implies a single natural mode having a damping part
determined by the effective "L/R" time constant [(oas/k tanh(kd)] and an
oscillatory part caused by the relative motion of the conductor through
the spatially periodic fields. Note the complete analogy between Eqs. 2
and 5.15.6. In the air gap, the single eigenmode, A(x), associated with
the eigenfrequency given by Eq. 2 is of thq form of Eq. 2.19.3 with the
coefficients adjusted to make the slope, dA/dx, zero at the stator surface Fig. 6.10.1.
(Hy = 0) and to make A continuous at the sheetAsurface. Because the normal
flux density is continuous through the sheet, A(x) is essentially uniform
over the sheet cross section. This is consistent with HV (which is proportional to dA/dx)
the surface of the highly permeable rotor next to the conducting sheet. The distribution
therefore given by

SIA cosh k(x-d); 0 < x < d

Ainside sheet
A ; inside sheet

Sheet model
eigenmode.

being zero on
of A(x) is

(3)

which is sketched in Fig. 6.10.1. The significance of the thin-sheet model is further appreciated by
considering the higher order modes which it does not embody.

Modes in a Conductor of Finite Thickness: For the same conductor air-gap configuration, but with
account taken of the conductor thickness, consider now the temporal modes implied by Eq. 6.6.9:

D(-jsn,k) = sinh kd(-_- coth ya + coth kd) = 0
nY o

The frequency enters in this expression through the parameter Yn, defined according to Eq. 6.5.5 by

yn = %/k2 + jao(-js n - kU)

In general, solution of Eq. 4 involves finding the complex roots sn that make the real and imaginary
parts of D(-js ,k) = 0. Because an enters only through yn, it is convenient to find the roots, Yn, and
then use Eq. 5 to find the implied roots sn. Fortunately, an infinite number of roots, Yn, are purely
imaginary, as can be seen by recognizing that coth u = jcot ju so that Eq. 4 becomes

cot(jyna) "o coth kd

jyna 1 ka

What is on the right in this expression is independent of (jyna)(and hence the frequency) and is real.
Provided that (jyna) is real, what is on the left is also real. Hence, a graphical solution for the
roots appears as shown in Fig. 6.10.2, where three of the roots Jyna = Bna (n = 0,1,.2) are shown. Given
the geometry and the layer permeability, which determine the right-hand side of Eq. 6, these roots are
a set of numbers which can be inserted into Eq. 5 (solved for Sn) to determine the associated eigen-
frequencies:

s = jkU -n
1 2 [(B a)2 + (ka)2]

U 'n

Thus, there are an infinite number of modes, each having its own characteristic dependence on the
transverse coordinate x. In terms of the vector potential A(x), Eq. 6.6.15 gives this dependence in
the air gap, but this distribution is best found by simply adjusting the origin Rf the x coordinate so
that a single hyperbolic function suffices to assure dA/dx = 0 at x = a + d and A = Ac at x = a:

ic cosh k[x - (a + d)]
n cosh kd a+d>x>a

cosh ynx cos[[n a (x-)
A =c ; a > x > 0n cosh ya n cos ana

n

The three eigenvalues found graphically in Fig. 6.10.2 are used to plot the eigenfunctions of Eq. 8 in
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Fig. 6.10.2. Graphical solution for eigenvalues (jyna) satisfying Eq. 6. Inserts show associ-
ated eigenfunctions, A(x), with ka = kd = 1 and P/io = 1. Roots shown are Boa = 0.776,

La = 3.364 and B2a = 6.401.

the inserts to Fig. 6.10.2. Note that the n = 0 eigenmode approximates the sheet mode, Fig. 6.10.1.

Formally, the n = 0 mode becomes the thin-sheet mode in the limit of "small a." First, this means
that Iyal << 1, so that cot u + 1/u, and Eq. 6 can be solved approximately to obtain

(Y a)2 = - ka tanh kd (9)

Thus, the n = 0 eigenfrequency follows from Eq. 7 as

S jkU 2ka tanh kd + ka) (10)

npa o

If the second term in brackets can be dropped compared to the first, Eq. 10 indeed reduces to the eigen-
frequency for the thin-sheet model, Eq. 2. Provided that (p/po)tanh kd is of the order of unity or more,
this condition is met if ka << 1. This is the second condition to validate the thin-sheet model. Note
that the two conditions for the thin-sheet model to approximate the lowest mode are just those given by
Eq. 6.6.13.

An important proviso on the use of the thin-sheet model is apparent from these deductions. Unless
the air gap is large compared to the sheet thickness, Eq. 10 does not follow from Eq. 9 and the thin-
sheet model is not meaningful. In physical terms this is true because, in the model, magnetic energy
storage within the sheet is ignored. To be meaningful, the sheet model must be incorporated into a
system that allows for energy storage outside the sheet volume. In this example, that region is the
air gap.

The general effect of decreasing the air gap can be seen from Fig. 6.10.2. As d is reduced,
coth kd + - and the horizontal curve moves upward. Thus, decreasing the gap decreases the values of

Bo**B* to the asymptotic roots ni,n = 0,1,*... It follows from Eq. 7 that reducing d results in a
decrease in the damping, in an increase in the time constant for decay of the sheet currents. This is

reasonable, because the reduction in gap width results in an increased inductance for current loops

in the y-z plane. Note that the n = 0 mode has an eigenvalue Bo that approaches zero as the gap is
reduced. Hence, in Eq. 7, the term ka (which represents the energy storage within the sheet) must be

retained. In the n=o mode, electrical dissipation is in the sheet while magnetic energy storage is

largely in the gap. In the higher order modes, energy storage in the conducting layer is appreciable.
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Orthogonality of Modes: Given an initial distribution of currents in the conducting layer, the
eigenmodes can be used to represent the resulting transient. More generally, the modes play the role
of the homogeneous solution in describing the response of a system to spatially periodic excitations,
as described in Sec. 5.15. This homogeneous solution is the superposition of the eigenmodes

Jz = Z n(x)ekY en (11)

The process by which the amplitudes Jn(x) are determined, given the initial conditions, is similar to
that for a Fourier series. But, because the eigenmodes do not satisfy simple boundary conditions, it is
not clear that these modes are orthogonal, in the sense that

Jn dx = 0, n 0 m (12)
o

A proof that Eq. 12 is in fact valid follows from the differential properties of n*. The equation
governing the current density modes follows from Eq. 6.6.16:

1z d2 k2 1 (13)

z \dx2

which is applied to Eq. 6.5.5 to see that

d2^
n 2

S2n = 0 (14)dx2 Yn n

Now, Eq. 14 is multiplied by another eigenmode, 3m, and the result integrated over the cross section of
the conducting layer. The first term can be integrated by parts to generate terms evaluated at the con-
ductor surfaces and an integral that is symmetric in m and n:

A a a A A

dJ dJ n 2A A

J +YJJ)dx=0 (15)Jm dx dx dx n nJm
o

These same steps can be carried out with the roles of m and n reversed, and if the resulting expression
is subtracted from Eq. 15, an expression is obtained that begins to look like Eq. 13:

dJ dJ I . an m• Y 2 a ^ ^
d- J = ( - Y) J J dx (16)[m dx n dx nn m'i nm(1

In the usual orthogonality condition (for example Eq. 4.5.28) homogeneous boundary conditions apply at
the extremes of the interval. Here, the nature of the fields in the air gap must be considered to see
that the left-hand side of Eq. 16 is zero. To express this in terms of A, observe from Eqs. 6.5.5 and
6.6.16 that

J = -(2( ) = -ja(-js- kU)A (17)

d A

S= -jo(-js n - kU) (18)

It follows from this last expression that because Hy = -(l1/)di/dx = 0 at x = 0, the left-hand side of
Eq. 16 evaluated at the lower limit is zero. Using Eqs. 17 and 18, what remains on the left can be
written as

dJ dJ a dA dA a
n Jn - = (-js - kU)(-s m - kU) Am - An-- (19)

Lim dx J n dx n m Wd n dm

That this quantity also vanishes follows from the properties of the gap fields. In the gap, where
Y2 - k2 , Eq. 6.5.2 becomes

d2A
n 2S _ k2A = 0 (20)

dx n
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Following steps analogous to those leading from Eq. 14 to Eq. 16, the field properties represented by
this expression are exploited to show that

F d
n - -4]a+d

A m OA=0 (21)

Because dA/dx = 0 at x = a+d (the highly permeable stator surface), it follows that Eq. 19 vanishes.
So long as sn # sm, Eq. 12 is valid.

6.11 Magnetization Hysteresis Coupling: Hysteresis Motors

Although induction devices of the type discussed in Secs. 6.4 and 6.6 are of the most common
variety, they are particular examples from a class of machines in which sources are induced in the
moving material. A somewhat less common member of the family is the hysteresis motor, known for its
relatively constant torque over speeds ranging from "start" to synchronism.

It is the magnetization that is induced in the rotor of the hysteresis motor, rather than free
current, as in the induction motor. Basic to the advantages of a hysteresis motor is the magnetization
characteristic of the moving member. The currents in the induction machine depend on a time rate of
change for their existence. They are rate-dependent, and so the magnitude and spatial phase of the
currents in the moving member, and hence the ponderomotive force, depend on the relative velocity of
material and traveling wave. By contrast, the spatial phase and magnitude of the magnetization induced
in the moving material through a hysteresis interaction tends to be state-dependent.

The quasi-one-dimensional model pictured in Fig. 6.11.1a gives the opportunity to explore the
physical basis for the hysteresis interaction in a quantitative way, but still avoid the extreme
complexity inherent to the complete understanding of a practical device. The model harks back to ones
developed in Secs. 4.12 and 4.13 for the variable capacitance machine. The stator surface current den-
sity, Kz(y,t), is a wave traveling in the y direction. Windings backed by a highly permeable "stator"
structure are perhaps as described in Sec. 6.4. Across the air gap, a, the moving material consists of
a highly magnetized "core" covered by a layer of magnetic material having thickness b, and the magneti-
zation characteristic shown in Fig. 6.11.1b.

As suggested by the permanent polarization interactions of Sec. 4.4, all that is required to obtain
a net force in the y direction is a spatial phase lag between the induced magnetization and the magnetic
axis of the current sheet. This phase delay is provided by the hysteresis, which insures that the
driving current must provide a certain coercive magnetic field intensity before the magnetization can be
reversed.

(a) (b)
Fig. 6.11.1. (a) Cross-sectional view of quasi-one-dimensional model. (b) Magnetiza-

tion characteristic approximated by hysteresis loop of Fig. 6.11.2.

At the risk of oversimplification, it is helpful to have a specific model in mind when dealing with
the magnetization characteristic. Typically, magnetic materials used in electromechanical devices are
polycrystalline, and can be thought of as composed of randomly oriented magnetlike domains. Application
of a magnetic field intensity tends to align these 4omains, but because of what might be termed a
"sticking friction," there is a threshold value of H at which the domains tend to flip into alignment with
the imposed field. In some materials, complete orientation of the domains is very nearly achieved, once

Secs. 6.10 & 6.11
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this threshold has been exceeded. For that reason,
and because it is then possible to make a relative-
ly simple analytical model, the hysteresis loop is
now approximated by the rectangular loop shown in

Fig. 6.11.2. (To some degree, the characteristic
depends on the rapidity with which the fields vary,
but for present purposes the curve is shown, re-
gardless of time rates of change.) The loop is
double-valued, so the manner of arrival at a given
point must be stipulated. That is, the magnetiza-
tion induced by the applied field depends on the
state of the fields, and not on their rate of
change. But also, it depends in an essential way
on the history of the magnetization.

Because of the highly permeable surfaces
backing the current sheet and the magnetizable
layer, the dominant magnetic field in the gap is
x-directed. Ampere's law in integral form for the
contour Cl of Fig. 6.11.1 shows that

-K Ay = [Ha(y + Ay) - Ha(y)]a
z x x

+ [Hb(y + Ay) - Hb(y)]b (1)
x x

Fig. 6.11.2. Idealization of magnetization char-
In the limit Ay + 0, this expression becomes acteristic showing graphical solution

,Ha aHb (a + b)/a = 2.
x x

-K = a + b x (2)
z 3y 3y

The flux density in the x direction is continuous at the air-gap/magnetic-layer interface, so

Ha = Hb + M (3)x x x

These last two expressions combine to relate the magnetization and field intensity in the magnetized
layer,

aHb 3M
x x

-Kz =(a + b) + a-- (4)Dy ay

For the present purposes, the surface current density is a given function of y, and so Eq. 4 can be
integrated:

M I _ (a + b) b; I K dy (5)
x a a x z

Under the assumption that steady-state operation implies that neither Mx or Ri have space-average
values, it follows that if I(y,t) is defined as having no space-average value, the integration con-
stant is zero. Because I is then a given function of y, Eq. 5 is a "load line" which can be used with
the magnetization characteristic of Fig. 6.11.2 to graphically solve for (Mx,Hx). For illustrative
purposes, the surface current is taken as a square wave, traveling to the right as sketched in
Fig. 6.11.3a. Although there are no rate processes, it is essential to recognize that, if the moving
member has a velocity less than that of the wave, the current distribution travels from left to right
with respect to the material. The magnetic axis associated with the stator wave is indicated on
Fig. 6.11.3a.

In the graphical solution of Eq. 5 and the magnetization characteristic depicted by Fig. 6.11.2,
begin at point (a), where I/a has its peak amplitude. Because the wave travels from left to right,
the magnetic material experiences a local evolution of I/a that proceeds from right to left on
part (b) of Fig. 6.11.3. Thus, the points (a) - (f) denote the history of the (Mx,Hx ) function in
Fig. 6.11.2, and these points correspond to those indicated in Fig. 6.11.3. The graphical solutions
for the magnetization and field intensity Hx are thus determined to be those shown in Fig. 6.11.3c.
The induced magnetization lags the magnetic axis on the stator. The hysteresis has created the con-
ditions for a force to the right.
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Fig. 6.4.3. (a) Distribution of surface current on "stator." (b) I/a; (c) dis-
tribution of magnetization and perpendicular magnetic field intensity in
moving member; and (d) field components in adjacent air gap.
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To determine the average force/unit area acting on one wavelength of the moving member, use is
made of the free-space stress tensor. The force density is due entirely to magnetization, and might
be taken as the Kelvin force density, Eq. 3.5.12 of Table 3.10.1, with Jf = 0. However, from
Table 3.10.1, the stress tensor evaluated in free space is the same regardless of the model for the force
density. This stress tensor is now integrated over a volume one wavelength long in the y direction,
with its upper surface at x = 0 and its lower surface adjacent to the perfectly permeable substrate.
Because there is no shear stress on the bottom surface, the average force/unit y-z area is

HT = HTyx o(Hx HaHb (6)

Note that Eq. 6 cannot be completed unless the y component of the magnetic field intensity is
known. Ampere's law in integral form, written for the contour C2 of Fig. 6.11.1a, relates Hy to fields
already determined,

-AyH(x = 0) + b[H(y + Ay)- H(y) ]  0 (7)
y x x

In the limit Ay -+ 0,

Hb
b  x

H = b (8)
y ay

and so Eq. 6 can be written as

aHb

(T)y = bHa 
(9)

b
The componentsof H required to evaluate Eq. 9 are sketched in Fig. 6.11.3d with aH /Dy determined by
taking the derivative of H~ from (c) of that figure, and H~ following from Eq. 3.

It is easy to take the spatial average indicated by Eq. 9, because the net contributions of those
segments indicated in brackets in Fig. 6.11.3d will cancel, and the remaining segments clearly give a
positive contribution. Thus, a space-average surface force density is deduced. It is independent of
the material velocity U, so that the force-velocity curve is as shown in Fig. 6.11.4. Once the material
velocity exceeds that of the wave, the relative direction of the current excitation is from right to
left, and the arguments already outlined lead to an oppositely directed magnetic force.

The simple quasi-one-dimensional model
illustrates why a hysteresis "torque-speed"
characteristic gives a torque that tends to be
independent of speed. The induced magnetization
has an effect similar to that of permanent magnets,
with the desired phase relationship between imposed
magnetic axis and material magnetization determined
by the history of the rotor as it is magnetized by
the stator current.

For design purposes, a more complete represen-
tation of the rotor material would be desirable,
although attempts to make use of analytical models
in dealing with hysteresis motors are not numerous.

Fig. 6.11.4. Dependence of magnetic surface force
density on speed for a hysteresis-type
device.

1. M. A. Copeland and G. R. Slemon, "An Analysis of the Hysteresis Motor: I - Analysis of the Idealized
Machine," IEEE Trans. on Power Apparatus and Systems, Vol. 82, April 1963, pp. 34-42, and II - "The
Circumferential Flux Machine," ibid., Vol. 83, June 1964, pp. 619-625.
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Problems for Chapter 6

For Section 6.2:

Prob. 6.2.1 Consider the configuration described in Prob. 2.3.3. In the MQS approximation and at low
frequencies the configuration can be represented by an inductance in series with a resistance. Because
the current is distributed, and in fact essentially uniform and x-directed, how should the inductance
be computed?

(a) One method uses the field in the zero frequency limit to determine the magnetic energy density,
and hence by integration the total stored energy. This is then equated to ½Li2 to obtain L. Use
this method to find L and show that it is 1/3 of the value for electrodes without the conducting
material but shorted at z = 0.

(b) Now, consider an alternative approach which considers the fields as quasistatic with respect to
the magnetic diffusion time o1M. In terms of the driving current, find the zero order fields as
if they were static. Then, from Eq. 6.2.7 find the first order fields that result from time varia-
tions of the zero order field. Evaluate the voltage at the terminals and show that it has the form
taken for a series inductance and resistance.

For Section 6.3:

Prob. 6.3.1 Show that Eq. (b) of Table 6.3.1 describes the rotating cylindrical shell shown in that
table.

Prob. 6.3.2 Show that Eq. (c) of Table 6.3.1 describes the translating cylindrical shell shown in
that table.

Prob. 6.3.3 Show that Eqs. (d) and (e) of Table 6.3.1 describe the rotating spherical shell shown in
that table.

Prob. 6.3.4 If a sheet is of extremely high permeability, the normal flux density Bn is not continuous.
Consider the sheets of Table 6.3.1 in the limit of zero conductivity but with a very high permeability
and show that boundary conditions are

nx H = 0; A=(V& H) + [[B = 0

These boundary conditions are appropriate if wavelengths in the plane of the sheet are long compared to
the sheet thickness. Thus the boundary condition can be used to represent a thin region that would
otherwise be represented by the flux-potential transfer relations of Sec. 2.16. To see this connection,
show that for a planar sheet, the above boundary condition can be written as

Ak 22 + Bix 0

Take the long-wave limit of the transfer relations from Table 2.16.1 to obtain this same result.

Prob. 6.3.5 In the boundary conditions of Table 6.3.1 representing a thin conducting sheet, Bn is
continuous while the tangential 1 is not. By contrast, for the condition found in Prob. 6.3.4 for a
highly permeable sheet, Bn is discontinuous and tangential H is continuous. What boundary conditions
should be used if the sheet is both highly permeable and conducting? To answer this question it is
necessary to give the fields in the sheet some dependence on the normal coordinate. Consider the
planar sheet and assume that the fields within take the form

B Bb + (B - ) H = Hb + (Ha - Hb
x x A x x y y A y y

Define <A> = (Aa+Ab)/2 and show that the boundary conditions are

AV <H >+>nIB = 0

and Eq. (a) of Table 6.3.1 with B + <B >.
x x
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For Section 6.4:

Prob. 6.4.1 A type of tachom-

eter employing 
a permanent 

magnet

is shown in Fig. P6.4.1a. In the
developed model, Fig. P6.4.1b, the
magnetized material moves to the
right with velocity U so that the
magnetization is the given func-
tion of (y,t). M is a given
constant. The thickness, a, of
the conducting sheet is small
compared to the skin depth.
Find the time average force per
unit y-z area acting on the con-
ducting sheet in the y direction.
How would you design the device
so that the induced force is pro-
portional to U?

Fig. P6.4.1a Fig. P6.4.1b
Prob. 6.4.2 Use the electrical
terminal relations derived from the model, Eq. 6.4.17, to show that the equivalent circuit of Fig. 6.4.3
is valid.

Prob. 6.4.3 For the developed induction motor model shown in Fig. 6.4.1b, the time average force in
the direction of motion is calculated. In certain applications, such as the magnetic levitation of
vehicles (see Fig. 6.9.2), the lift force is also of importance. Find the time average lift force
on the stator, <fx>t, with two phase excitation. With single phase excitation, sketch this time
average lift force as a function of Sm and explain in physical terms the asymptotic behavior.

Prob. 6.4.4 The cross section of a rotating induction machine is shown in Fig. 6.4.1a. The stator
inner radius is (a), while the rotor has radius (b) and angular velocity Q. The windings on the stator

have p poles and two phases, as in the planar model developed in the section. For two phase excitation,
find the time average torque on the rotor, an expression analogous to Eq. 6.4.11. Define 0 as the
clockwise angle from the vertical axis in Fig. 6.4.1a.

Prob. 6.4.5 For the rotating machine described in Prob. 6.4.4, find the two phase electrical terminal
relations analogous to Eq. 6.4.17. Determine the parameters in the equivalent circuit, Fig. 6.4.3.

Prob. 6.4.6 This problem is intended to illustrate the application of the boundary conditions for a
thin sheet that is both conducting and highly permeable, as in Prob. 6.3.5. In the plane x=0 there is
a surface current density Kf = izRe Ko exp j(wt-ky). The region x < 0 is infinitely permeable. In the
plane x=d, a sheet of thickness A, permeability p and conductivity a moves in the y direction with
velocity U. This sheet can shield the magnetic field from the region x > d either by virtue of its
conductivity or its magnetizability. Find the magnetic potential just above the sheet (x=d+). Con-
sider p + po and show that for iooA(w-kU)/k large, the field is excluded from the region x>d. Simi-
larly, take a + 0 and show that if kA(f/po) >>I, shielding is obtained. Show that the effect of the
permeability is to reduce the effectiveness of conduction shielding. In qualitative physical terms,
why is there this conflict between the two types of shielding?

Prob. 6.4.7 A linear induction machine has the configuration of Fig. 6.4.1. However, the stator
winding has a finite length k in the y direction. Thus the stator surface current is

Ks = [u 1 (y)-u 1 (y-k)] Re K exp j(wt-Sy)

Thus, the "stator" might be attached to a vehicle (such as that shown in Fig. 6.9.2) and the conducting
sheet and magnetic backing might be the "rail." Using the approach of Sec. 5.17, show that the time

average force exerted on the rail is

-H IKol w __ _ _ _ __2(k-_)__<oK2w Sm sin [(k )P,]dk
<f > =

z t (k-)2sinh2 kd(l + S2 coth2 kd)
m

where S = I a (w-kU)/k.
m Os
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Prob. 6.4.8 The induction machine rotor is a useful model for understanding phenomena observed if
liquid metals are stressed by a-c magnetic fields. Motions of the liquid result from a competition of
viscous and inertial forces with those from the magnetic field. Instability can result from the effect
of the motion on-the field. To illustrate, consider the single phase excitation of the configuration
shown in Fig. 6.4.1. The "air gap" is filled with a liquid having viscosity 1. Under the assumption
that the flow in the gap resulting from the relative motion of the rotor and stator is fully developed
and laminar, the viscous stress acting to retard the motion of the rotor is given by Eq. 7.13.1. As the
magnetic field intensity Ho E Naia is raised, there is a threshold at which the rotor spontaneously moves
in one direction or the other. Write the condition for this instability in terms of the dimensionless --

numbers kd, RM (product of frequency and magnetic diffusion time) and TMV (TMV 2 n/oHo, the magneto- -V

viscous time as defined in Sec. 8.6). Mh 0

For Section 6.5:

Prob. 6.5.1 Carry through the steps of Eqs. 6.5.8 - 6.5.10 leading to the transfer relations for
rotating cylinders. Check relations (c) and (d) of Table 6.5.1.

Prob. 6.5.2 Carry through the steps beginning with Eq. 6.5.13 and leading to the transfer relations
(e) and (f) of Table 6.5.1.

For Section 6.6:

Prob. 6.6.1 The rotor of an induction motor has finite
thickness. Dimensions are defined in Fig. P6.6.1. The
stator windings have p poles and two phases, the circular
analogue of the windings for the developed model of
Sec. 6.4. Hence the stator surface current distribution
is the circular analogue of Eq. 6.4.1. Find the time
average torque on the rotor.

Prob. 6.6.2 An induction machine is used to propel a
circular cylindrical conductor in the longitudinal direc-
tion z. The "stator" consists of circumferential wind-
ings at the radius (a) surrounded by an infinitely perme-
able magnetic material in the region r > a. The material
being propelled is coaxial with this structure and is of
radius R, conductivity a and permeability p. Thus, there
is an annular air gap of thickness a-R. The conducting rod
has a velocity U in the z direction.

(a) The stator windings are in a three phase configuration
driven by the three phase currents (ia, ib, ic ). Thus Fig. P6.6.1
the surface current on the stator structure is

Ke = Re[iaeJW a cos(k) + bbetNbcos(kz- ) +2 ic jtNc cos(kz T)]

Represent this driving surface current in the form

K0 = Re [i e j ( wt-kz) + As e j (wt+kz)]

and identify K and K in terms of the terminal currents, turns per unit length Na, Nb, Nc, etc.

(b) Find the time average longitudinal force <f >t acting on a length of the rod.

Prob. 6.6.3 A linear induction machine has the configuration of Fig. 6.6.1, except that the stator
surface current spans a limited length £ in the y direction. The driving current is

K = [u 1 (y)-u_ (y-i)] ReK exp j(wt-by)

Use the approach illustrated in Sec. 5.17 to show that the total force on the conducting slab and its
highly permeable backing is
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Prob. 6.6.3 (continued)

<f >
y t

wliK + j sin [(k ]dk
= Re2 k

(k-B)2 sinhj kd[•Y coth ya + coth kd]
-· Y 1o

where ay = /(ak) 2 + j SM, SM E a2 (c-kU)

For Section 6.7:

Prob. 6.7.1 The conducting layer of Fig. 6.7.1 represents the only lossy element in a linear induction
machine. Arrangement of air gaps and magnetic materials is arbitrary. Special cases are the configura-
tions of Fig. 6.4.1 and 6.6.1. Stator windings impose a pure traveling wave having phase velocity w/k
in the y direction. With Pm and Pd defined as the time average mechanical power output and electrical
dissipation, respectively, the electrical power input is Pm + Pd. Show that the efficiency, Eff

Pm/(Pm+Pd), is U/(W/k). Define the "slip" by s E [w/k)-U)]/(m/k), and show that Eff = 1-s.

Prob. 6.7.2 In terms of the same variables as used to express the time average force (Eq. 6.6.10),
determine the time average electrical dissipation for the induction machine of Fig. 6.6.1.

For Section 6.8:

Prob. 6.8.1 A high frequency magnetic field is used to raise
a liquid metal against gravity, as shown in Fig. P6.8.1. The
skin depth is short compared to other dimensions of interest.
Express the magnetic surface force density acting on the
interface at the right in terms of the power dissipated in
the liquid. What is the height E as a function of the power
dissipated? (See Section 7.8 for the modicum of fluid statics
needed here.)

For Section 6.9:

Prob. 6.9.1 Carry out the similarity transformation con-
verting Eq. 6.9.3 to Eq. 6.9.7.

Prob. 6.9.2 A container holds a layer of liquid metal
having depth b and length £, as shown in Fig. P6.9.2.
The system extends far enough in the z direction that it
can be regarded as two-dimensional. At a distance h(y)
above the interface is a bus-bar. Alternating current
passes through this bar in the z direction and is returned
through the liquid metal in the opposite z direction.
Because the skin depth in both conductors is short com-
pared to h(y) and b, magnetic flux is essentially ducted
between the bus and the liquid metal, as sketched. The
field throughout the air gap therefore has the same tem-
poral phase. In the sairit of a quasi-one-dimensional
model, in the air gap P has the zero order dependence Hy = H a/h, where
intensity at the left where y = 0. The slope of the bus, dh/dy, at y =

Fig. P6.8.1

Ho = Re Ho exp(jwt) is the field
0 is given as S.

(a) Find Hy in the skin region of the liquid using the boundary layer model, Eq. 6.9.1. Assume that

the fluid velocity has a negligible effect.

(b) Use the divergence law, Eq. 6.9.2, to approximate the normal flux density at the interface.

(c) Find the time average magnetic shearing surface force density acting over the thin skin layer.

(d) Show that if this quantity is to be independent of y, the bus gegmetry must be h = a[l - 2S(y/a)]- .

(e) Show that this uniform surface force density is

<T >t IoH S 6
yt 4a o0
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Prob. 6.9.3 For the configuration described in Prob. 6.9.2,

find the total power dissipatio 
l

Prob. 6.9.4 For the configuration considered in this sec-

tion, the magnetic structure has a total length L. As a
function of time and y, compute the power dissipation in I
the conductor. What is the total power dissipation? a

For Section 6.10:

X
S.. . .:

† † † † † † † † † † † † † † . . (Y).
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Fig. 6.10.1 A uniformly conducting slab of thickness 2a Fig. P6.9.2
and permeability 1 moves in the z direction with velocity
U. To either side of the slab are air gaps of thickness d backed by infinitely permeable materials.
Thus, half of the system is like that of Fig. 6.6.1 for x > 0, with x=0 a plane of symmetry. Because
of the symmetry, temporal modes can be divided into those that are even and odd in Hy. Show that the
odd modes are represented by Eq. 6.10.6. Find the analogous expression for the even modes, representing
the graphical solution by a sketch similar to that of Fig. 6.10.2.

Prob. 6.10.2 A uniformly conducting circular cylindrical shell has outer radius a and inner radius b
and spins about the z axis with angular velocity 0. The regions outside and inside the shell are filled
by infinitely permeable material. The system is long in the z direction compared to the outer radius a.
However, the distance a-b is not small compared to the outer radius a.

(a) Find eigenfrequency equations from which the frequencies of the temporal modes can be determined.
(The expression can be factored into two somewhat simpler expressions that define two classes of
modes.)

(b) Define as a parameter the ratio b/a, and ya : /japa2(-Q) as another parameter representing the
frequency. Describe how you would solve for the eigenfrequencies.

Prob. 6.10.3 A spherical shell has radius R and spins about the z axis with angular velocity 0. It
has a surface conductivity as and is filled with an insulating material having permeability p.
(a) Starting with the boundary condition, Eq. (d) of Table 6.3.1, find the temporal modes.

(b) Find the decay time resulting if a uniform external field directed along the z axis is suddenly
turned off.

(c) What is the frequency .of the temporal transient if a uniform field perpendicular to the z axis is
suddenly turned off?

Prob. 6.10.4 For the configuration described in Prob. 6.6.2, the excitation is suddenly turned on or
off. The resulting transient is initiated with the same k as imposed by the excitation.

(a) Find the transcendental equation that determined the eigenfrequencies of the temporal modes.

(b) Outline a procedure for numerically determining the eigenfrequencies. (Hint: Is it plausible that
an infinite number of roots exist where the frequency measured in the frame of reference of the rod
is purely imaginary?)

Prob. 6.10.5 In a configuration that generalizes that of Fig. 6.6.1, the entire region 0< x< a+d is
filled by a nonuniform conductor having conductivity o(x) and velocity I=U(x)ly. Note that the uniformly
conducting material partially filling the air gap and suffering rigid-body motion is a special case.
Start with Eq. 6.2.6, keeping the x dependence of a and U so that the expression is valid over the
entire range of x. Show that the amplitudes n of the vector potential modes satisfy an orthogonality
condition which is Eq. 6.10.12 with Jn -/(3) An.
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