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SOLUTIONS TO CHAPTER 10

10.0 INTRODUCTION

10.0.1 (a) The line integral of the electric field along 0 1 is from Faraday's law:

(1)

because no flux is linked (see Fig. S10.0.la). Therefore

-t/+iR =a

because the voltage drop across the resistor is iR. Hence

t/ = iR (2)

R

v

c+
v

F1sure BIO.O.la,h

The line integral along O2 is

4iR = d.A (3)
dt

which leads to

(4)

1
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Therefore, we find for the voltage across the voltmeter 

1 dw.\ 
v=---	 (5)

4 dt 

(b) With the voltmeter connected to 2, (1) becomes 

v = 2iR 

Using (2), 

and similarly for the other modes 

. [1 dW.\]v(3) = 3[IR] = 3 - 
4 dt 

v(4) = 4iR = 4[! dW.\] = dw.\ 
4 dt dt 

For a transformer with a one turn secondary (see Fig. S10.0.lb), 

v = 1 E· dl = !.... ! B . da = !!.w.\
fa at dt 

10.0.2	 Given the following one-turn inductor (Figs. S10.0.2a and S10.0.2b), we want 
to find (a) tI2 and (b) VI. The current per unit length (surface current) flowing 
along the sheet is K = i/d. The tangential component of the magnetic field has to 
have the discontinuity K. A magnetic field (the gradient of a Laplacian potential) 

HIlS = di inside (1) 
= 0 outside 

has the proper discontinuity. This is the field in a single turn "coil" of infinite width 
d and finite K = i / d. It serves here as an approximation. 

(a) tI2 can be found by applying Faraday's law to the contour O2 , 

Using (I), and the constitutive relation B = PoD, 

l (B) l(A) d 1 i(t)
E·ds+ E·ds=-- Po-dxdy (2) 

(A)a2 (B)a2 dt 82 d 



Solutions to Chapter 10 10-3

Since the inductor waDs are perfectly conducting, E = 0 for the second integral
on the left in (2). Therefore,

or,
slJjo diet)

~U2=---

d dt

--
I

surface current, K,
flows through.
inductor walls

8

P,o~

I'"-----......'--+:z: ---of"

one-turn ~

inductor d ~;""------'--.----"?I

/;/-- -

flows
through
this surface

K = i(t)/d __ y __

- - -~:::.=;.=--------_ ..~ ..
Flsure 810.0.3

(b) Now, tl1 can be found by a similar method. Writing Faraday's law on 0 1,

(3)

Since 0 1 does not link any flux, (3) can be written

d
-til =--(0) =0

dt
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10.1	 MAGNETOQUASISTATIC ELECTRIC FIELDS IN 
SYSTEMS OF PERFECT CONDUCTORS 

10.1.1	 The magnetic field intensity from Problem 8.4.1 is 

B i1fR2 [ 1I( 1 1). . 1I( 1 2 ). ]
= 4;- 2cos 11 ,.s - b3 I r + sm 11 ,.s + b3 16 

The E-field induced by Faraday's law has lines that link the dipole field and uniform 
field. By symmetry they are tP-directed. Using the integral law of Faraday's law using 
a spherical cap bounded by the contour r = constant, 9 = constant, we have 

.	 6f E· ds = 21frsin9E~ = - :t 1J.'o B r 21frsin9rd9 

di 1fR216	 1 1=-J.'o-- 21f~2sin9cos9d9(---)
dt 41f 0	 ,.s b3 

di 1fR2 2 ( 1 1). 2 
= -J.'	 ---1fr- - - - 2sm 9 

o dt 4,.. ,.s b3 

Thus: 

10.1.2	 (a) The H-field is similar to that of Prob. 10.0.2 with K specified. It is z-directed 
and uniform 

H. = {K inside	 (1)o	 outside 

Indeed, it is the gradient of a Laplacian potential and has the proper discon
tinuity at the sheet. 

(b)	 The particular solution does not need to satisfy all the boundary conditions. 
Suppose we look for one that satisfies the boundary conditions at 11 = 0, Z = 0, 
and 11 = a. IT we set 

(2) 

with Ezp(O, t) = 0 we have satisfied all three boundary conditions. Now, from 
Faraday's law, 

(3) 

Integration gives 

(4) 
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x=o x=a x=o x=a 

(a) (b) 

Figure SlO.l.~a,b 

The total field has to satisfy the boundary condition at y = -l. There, the field 
has to vanish for almost all 0 ~ x ~ a, except for the short gap at the center of the 
interval. Thus the E",-field must consist of a large field : E",p, over the gap 9, and 
zero field elsewhere. The homogeneous solution must have an E",-field that looks 
as shown in Fig. SlO.1.2a, or a potential that looks as shown in Fig. SlO.1.2b. The 
homogeneous solution is derivable from a Laplacian potential cI>h 

(5) 

which obeys all the boundary conditions, except at y = -l. Denote the potential 
cI>h at y = -l by 

cI>h(y = -l) = aE",pf(x) (6) 

so that the jump of /(x) at x = a/2 is normalized to unity. Using the orthogonality 
properties of the sine function, we have 

- sinh ( m1l" l) ~ Am = aE",p fa / (x) sin (m1l" x) dx (7) 
a 2 }",=o a 

It is clear that all odd orders integrate to zero, only even order terms remain. For 
an even order, except m = 0, 

a 2

l m1l" l a
/ x m1l"/(x) sin (-x) = 2 - sin (-x)dx 

",=0 a ",=0 a a

l mfr 2 
2a /= -()2 usinudu 

mll' u=o (8) 
2 

= (~;)2 [ - ucosul;;'fr/2 +l mfr
/ COSUdU] 

= ~(_l)-'f+l 
mll' 

Therefore 
m-even 

(9) 
m-odd 

http:SlO.1.2a
http:SlO.1.2b
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The total field is 

dK {[ ~ / sinh!M y m1l"]E = lJo- ix Y-I L.J 2(-1)m 2 . h'::''/I' I cos (-z)
dt m sma a 

(10) 
• ~ m/2cosh ~'/I'y • (m1l" )]}

-1)'1 L.J 2(-1) . h !Ml sm -z 
m sIn 2 a 

~ ... ~n 

10.1.3 (a) The magnetic field is uniform and z-directed 

B = i.K(t) 
(b)	 The electric field is best analyzed in terms of a particular solution that satisfies 

the boundary conditions at tP = 0 and tP = a, and a homogeneous solution 
that obeys the last boundary condition at r = a,. The particular solution is tP
directed and is identical with the field encircling an axially symmetric uniform 
H-field 

(1) 

and thus 
r dK 

E~ = -"2IJ0dt (2) 

The homogeneous solution is composed of the gradients of solutions to Laplace's 
equation 

(3) 

At r = a, these solutions must cancel the field along the boundary, except at 
and around tP = a/2. Because 8 < a, we approximate the field E</>h at r = a 
as composed of a unit impulse function at tP = a/2 of content 

a dK 
aE</>p = -"2alJ0dt	 (4) 

and a constant field 
a	 dK 

E</>h = "21J0dt 

over the rest of the interval as shown in Fig. S10.1.3. Feom (3) 

1 aCbh 1 L n1l"tPE</>h I _ = --- = -- (n1l"/a) An cos (-) (5)
r_G a atP a	 a 

n 

l_ 
T-E~p 

Figure SI0.1.8 
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Here we take an alternative approach to that of 10.1.2. We do not have to worry 
about the part of the field over 0 < ~ < a, excluding the unit impulse function, 
because the line integral of E~ from ~ = 0 to ~ = a is assured to be zero (conser
vative field). Thus we need solely to expand the unit impulse at ~ = a/2 in a series 
of cos (~tr ~). By integrating 

1 a
--(m7f/a)Am - = cos(m7f/2)aE<flp	 (6) 

a	 2 

where the right hand side is the integral through the unit impulse function. Thus, 

(7) 

Therefore 

(8) 

and 

E = - ~o d: i{~ + f: 2(_1)m/2(r/a)~-1 
m_3 

m-eYeD.	 (9) 

10.1.4.	 (a) The coil current produces an equivalent surface current K = Ni/d and hence, 
because the coil is long 

(1) 

(b)	 The (semi-) conductor is cylindrical and uniform. Thus E must be axisym
metric and, by symmet~, ~-directed. From Faraday's law applied to a circular 
contour of radius r inside the coil 

dB. 2
27frE~ = - --7fr

dt 

and 
r Ndi 

E~ = -2~od dt 

(c)	 The induced H-field is due to the circulating current density: 

where we have set 
i(t) = I coswt 
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The H field will be axial, z- and ~independent, by symmetry. (The z- "inde
pendence" follows from the fact that d::> b.) From Ampere's law 

10-8 

VxH=J 

we have 
dHz--=J.,
dr 

and thus 
r 2 N 

Hz induced = -wC1'4IL0"dlsinwt 

For Hz induced <: Hz imposed for r ~ b 

10.1.5 (a) From Faraday's law 
a

VxEp=--Bat (1) 

and thus 
aElIP N di 
--=-IL - az ° ddt 

(2) 

Therefore, 

(3) 

(b)	 We must maintain E·n = 0 inside the material. Thus, adding the homogeneous 
solution, a gradient of a scalar potential., we must leave E z = 0 at z = 0 
and z = b. Further, we must eliminate ElI at y = 0 and y = a. We need an 
infinite series .h =L An cos (~'Ir z) sinh (nb'lr y)	 (4) 

n 

with the electric field 

At y = ±a/2 

(6)
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f(x) = x - ~

-b/2

(a)

10-9

E"
y Eta E

(7)

Set - P.~ ~ = p<lIIitive number

(b)

Flpre S10.1.1

We must expand the function shown in Fig. S10.1.5a into a cosine series. Thus,
multiplying (6) by cos ":,tI' z and integrating from z = 0 to z = b, we obtain

m1l" b (m1l" ) N di l b
( b) m,..---A cosh -·-a = I/o -- z - - cos -zdz

b 2 m 2b 0 d dt 0 2 b

{
N IJi ( b )2= -1/007 dt 2 m;r m - odd

Om-even
Solving for Am

m - even
m- odd

(8)

The E-field is

E - _ N di {(z _~)i _ ~ 4bj(m'll")2
- 1/00 d dt 2 '11 LJ cosh(m'll"aj2b)

n-odd

[sin (~,..z) sinh (~'Il"y)lx

_ cos (n;z) cosh (~'Il" Y)ly]}
(c) See Fig. SlO.1.5b.

(9)



Solutions to Chapter 10 10-10 

10.2	 NATURE OF FIELDS INDUCED IN FINITE 
CONDUCTORS 

10.2.1 The approximate resistance of the disk is 

R= !211"a~ 
(J 2 at. 

where we have taken half of the circumference as the length. The fiux through the 
disk is [compare (10.2.15)1 

A= J.'oi2a 
2 

This is caused by the current i 2 so the inductance of the disk L22 is (using N = 1): 

The time constant is 

This is roughly the same as (10.2.17). 

10.2.2	 Live bone is fairly "wet" and hence conducting like the surrounding fiesh. 
Current lines have to close on themselves. Thus, if one mounts a coil with its axis 
perpendicular to the arm and centered with the arm as shown in Fig. 810.2.2, circu
lating currents are set up. IT perfect symmetry prevailed and the bone were precisely 
at center, then no current would fiow along its axis. However, such symmetry does 
not exist and thus longitudinal currents are set up with the bone off center. 

Flsure 810.2.2 
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10.2.3 The field of coil (1) is, according to (10.2.8) 

(1) 

The net field is 

with Hind = K~ where K~ is the ¢J directed current in the shell. The E-field is 
from Faraday's law, using symmetry 

(2) 

But 

(3) 

and thus, for r = a 

2Hind d d--+ -Hind = --Ho	 (4)
/Aou!i.a dt dt 

In the sinusoidal steady state, using complex notation 

(5) 

and 

(6) 

where 
/Aou!i.a

1"m= -
2 

At small values of W1"m 

(7) 

10.3	 DIFFUSION OF AXIAL MAGNETIC FIELDS THROUGH 
THIN CONDUCTORS 
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'J 
10.3.1 The circulating current K(t) produces an approximately uniform axial field 

H. = K(t) (1) 

As the field varies with time, there is an induced E-field obeying Faraday's law 

1 E.ds=-~ r#LoB . da (2)10 dt 18 

The E-field drives the surface current 

K= AuE (3) 

that must be constant along the circumference. Hence E must be constant. From 
(1), (2), and (3) 

K d 24aE = 4a- = -_IL Ka (4)
Au dt""o 

and thus 
d 4
-K+--K=O (5)
dt lJoUAa 

Thus 
(6) 

with 
p-ouAa 

1"m= -4- (7) 

10.3.2 (a) This problem is completely analogous to 10.3.1. One has 

and, because K 
be constant 

Therefore 

or 

with 

H. = K(t) (1) 

= AuE must be constant along the surface, so that E must 

d d2 
(2d + V2d)E = --d#LoK(t)- (2)

t 2 

~ K d d
(2 + v2)- = --(lJoK)- (3)

Au dt 2 

dK K
-+-=0 (4)
dt 1"m 

#LouAd 
1"m = 2(2 + V2) (5) 
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The solution for J = K/ li. is

10-13

(6)

(b) Since

1 E.ds=O
10 1

and the line integral along the surface is V2dE, we have

(c) Again from Faraday's law

(7)

(8)

(9)

(10)

10.3.3 (a) We set up the boundary conditions for the three uniform axial fields, in the
regions r < b, b < r < a, r > a (see Fig. S10.3.3).

Ho(t) - H1 (t) = -Kout(t) = -Joutli. = -uEoutli. (1)

H 1(t) - H2 (t) = -KID(t) = -JIDli. = -uEiDli. (2)

1

positive
direction ~

of K

Fleure SI0.S.S
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From the integral form of Faraday's law: 

21l"aEout = -11-0 dt
d 

[H1(t))1l"(a2 - b2) + H2(t)d2] (3) 

21l"bEin = -11-0 :t [H2(t)d2] (4) 

We can solve for E out and E in and substitute into (1) and (2) 

(1/:1 [a2 - b2 dHdt) b2 dH2(t)]Ho ()t - H1(t) -
_ 

11-0""2 a dt + -;----;;u- (5) 

_ (1/:1b dH2 (t)
H 1()t - H2 (t) - 1I-0-

2
-----;;u- (6) 

We obtain from (6) 

(7) 

where 
lI-o(1/:1b 

Tm ==-
2 

From (5), after some rearrangement, we obtain: 

=> ~ ~ dH2 + ~ (~-~) dHdt) + H1(t) = H (t) (8)
m a dt mba dt 0 

(b)	 We introduce complex notation 

Ho = Hm coswt = Re {Hme;wt} (9) 

Similarly H1 and H2 are replaced by H1,2 = Re IH1,2e;wtj. We obtain two 
equations for the two unknowns III and II2 : 

-Ill + (1 + iWTm)II2 = 0 

1 + 1.WTm(ab b)] A b . A

[ - ~ H1+ ~1WTmH2 = Hm 

They can be solved in the usual way 

1+iwTm I 
fI = IH0 

m ~iWTm = _ (1 + iWTm)Hm
1 LJet	 lJet 

mII2= 11 + WT,:t~ -~) J I= _H m 

LJet LJet

where LJet is the determinant.


LJet == -{ [1 + iWTm(i - ~)](l + iWTm) + iWTm~} 



Solutions to Chapter 10

10.3.4 (a) To the left of the sheet (see Fig. 810.3.4),

B = Koi-.

To the right of the sheet
B=Ki.

Along the contour Gl , use Faraday's law

1 E. ds = _!!. rB· da
10 1 dt Js

10-15

(1)

(2)

(3)

II K-KoIt,
I /

!J,. 1;1
I

(To
(T = ----..:----,=

1+ a cos !'f

Figure SI0.a.4

Along the three perfectly conducting sides of the conductor E = O. In the sheet the
current K - Ko is constant so that

V·J=O~V·(uE)=O

i l b (K - Ko) dKE· ds = Ii. dy = -I-'oab-
d01 1/=0 00 t

K - Ko r ( 1fY) dK
li.uo JI/=o 1 + a cos b dy = -I-'oab""dt

The integral yields b and thus

(4)

(5)

(6)

(7)

(8)

From (7) we can find K as a function of time for a given Ko(t).

(b) The y-component of the electric field at :t: = -a has a uniform part and a
y-dependent part according to (5). The y-dependent part integrates to sero
and hence is part of a conservative field. The uniform part is

K-Ko dK
Ewb = - Ii. b = I-'oab-

d000 t
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This is the particular solution of Faraday's law

with the integral
dK

Eyp = -I-'ozdi"

and indeed, at z = -a, we obtain (8). There remains

K - Ko ('lrY)
Ellh = - !:iu

o
acos b

(9)

(10)

(11)

It is clear that this field can be found from the gradient of the Laplacian
potential

~ = A sin <'7) sinh (~z) (12)

that satisfies the boundary conditions on the perfect conductors. At z = -a

and thus

8~ I 'Ir 'lrY. <'Ira K - Ko 'lry-- = -Acos-smh -) =- acos-8y :1:=-4 b b b !:iuo b (13)

(14)

10.4 DIFFUSION OF TRANSVERSE MAGNETIC FIELDS
THROUGH TmN CONDUCTORS

10.4.1 (a) Let us consider an expanded view of the conductor (Fig. 810.4.1). At y = !:i,
the boundary condition on the normal component of B gives

(1)

11

(a)

(e) ~ (IT,lL)

(b)

F1sure 910.4.1
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Therefore 
(2) 

At y= 0 
(3) 

Since the thickness, 11, of the sheet is very small, we can assume that B is uniform 
across the sheet so that, 

(4) 

Using (3) and (4) in (2), 
BG-Bb=O (5)11 11 

From the continuity condition associated with Ampere's law 

Since 
K =K.I., n =I,., 

_HG+Hb = K (6)III III • 

The current density J in the sheet is 

J _ K. (7)
• - 11 

And so, from Ohm's law 
E _ K. (8)

• - l1a 

Finally from Faraday's law 
BD

VxE=- (9)Bt 
Since only B II matters (only time rate of change of flux normal to the sheet will 
induce circulating E-fields) and E only has a z-component, 

BE. BBII 
- Bz =-lit 

From (8) therefore, 

and finally, from (6), 

(10) 

(b) At t = 0 we are given K = I.Kosinpz. Everywhere except within the current 
sheet, we have J = 0


=> B = -V\If
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So from V . ,",oH = 0, we have 

Boundary conditions are given by (5) and (10) and by the requirement that the 
potential mut decay as y -+ ±oo. Since Hz will match the sinfJz dependence 
of the current, pick solutions with cos fJz dependence 

w(a) = A(t) cos fJze- fJ1I (l1a) 

web) = O(t) cos fJzefJ1I (l1b) 

H(a) = fJA(t) sin fJze- fJ1I i x + fJA(t) cos fJze- fJ1I i y (12a) 

H(b) = fJO(t) sin fJzefJ1I i x - fJO(t) cos fJzefJ1Iiy (12b) 

From (5), 

Therefore, 
A(t) = -O(t) (13) 

From (10), 

:z [fJA(t) sin fJze-1J1I11I=0 - fJO(t) sin fJze{J1I1 1I=0] 

dA(t)
= -dO',",ofJ cos fJze- fJ1I 1 =0 dt"

11

Using (13) 
dA(t)

2fJ2 A(t) cos fJz = -dO',",ofJ cos fJzdt" 

The cosines cancel and 

dA(t) + ~A(t) = 0 (14)
dt dO',",o 

The solution is 

A(t) = A(O)e- t / r (15) 

So the surface current, proportional to Hz according to (6), decays simila.rly 
as 
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10.4.2 (a) IT the sheet acts like a perfect conductor (see Fig. S10.4.2), the component of
B perpendicular to the sheet must be sero.

y

y=d

)--~-c~~-{i()------z

IL --+ 00 K(t) = i.K(t) cos{jz

Figure SlO.4.~

At y = 0 the magnetic field experiences a jump of the tangential component

with n II i)' and B 2 = 0,
Hz = -K(t)cospz

The field in the space 0 < y < d is the gradient of a Laplacian potential

'ilf = A sin pz cosh P(y - d)

The cosh is chosen so that HIJ is sero at y = d:

(1)

(2)

(3)

B = -AP[cospzcoshP(y - d)ix + sin pz sinh P(y - d)i)'] (4)

Satisfying the boundary. condition at y = 0

-ApcospzcoshPd = -K(t) cospz

Therefore
A = K(t)

pcoshPd

'ilf = K(t) sinpzcoshP(y - d)
pcoshPd

(5)

(6)

(7)

(b) For K(t) slowly varying, the magnetic field diffuses straight through 80 the
sheet acts as if it were not there. The field "sees- IJ - 00 material and,
therefore, has no tangential H

'ilf = A sin pz sinh f3(y - d) (8)



10-20 Solutions to Chapter 10 

which satisfies the condition Hz = 0 at y = d. Indeed, 

B = -AP[cosp:r:sinhp(y - d)ix + sinpzcoshP(y - d)l~1 

Matching the boundary condition at y = 0, we obtain 

A = _ K(t) (9)
P sinh Pd 

q; = _ K(t) sin pzsinh Ply - d) (10)
P sinh Pd 

(c)	 Now solving for the general time dependence, we can use the previous results 
as a clue. Initially, the sheet acts like a perfect conductor and the solution 
(7)	 must apply. As t - 00, the sheet does not conduct, and the solution 
(10) must apply. In between, we must have a transition between these two 
solutions. Thus, postulate that the current 1.K, (t) cos pz is flowing in the top 
sheet. We have . 

K,(t)cospz = ut::..E.	 (11) 

Postulate the potential 

.q; = O(t) sin pz cosh P(y - d) _ D(t) sinp:r:sinh P(y - d) (12) 
pcoshPd psinhpd 

The boundary condition at y = 0 is 

8q; 
- 8z 11/=0 = Hz 11/=0 = -K(t)cospz (13) 

= -O(t) cos pz - D(t) cos pz 

Therefore 
O+D=K (14) 

At y= d 

8q; 1 I	 cospz 
- 8z lI=d = Hz lI=d = K, (t) cos pz = -O(t) cosh Pd (15) 

The current in the sheet is driven by the E-field induced by Faraday's law 
and is z-directed by symmetry 

8E. __ !... H _ cospzcoshP(y - d) dO 
8y - 8t IJo z - lJo cosh Pd dt 

(16)
cos p:r:sinh Ply - d) dD 

- lJo sinh Pd dt 

Therefore, 

E _ lJo cos p:r:sinhp(y - d) dO cos pz cosh P(y - d) dD 
• - pcoshPd dt -lJo psinhPd dt (17) 
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At y= d 
1 dD K. cos [3x 

E z = -1-'0 [3 sinh [3d cos [3xdI = u!J. (18) 

Hence, combining (14), (15), and (18) 

I-'ou!:::&	 dD 
cosh [3dK. = -C(t) = -K + D = --[3- coth[3ddI (19) 

resulting in the differential equation 

I-'ou!:::& h Rd dD D K--cot l'	 -+ = (20)
[3 dt 

With K a step function 

(21) 

where 
I-'ou!:::& 

1"m = -- coth [3d	 (22)
[3 

and 
C = Koe-tlrm 

At t = 0, D = 0 and at t = 00, C = O. This checks with the previously 
obtained solutions. 

10.4.3	 (a) If the shell (Fig. 810.4.3) is thin enough it acts as a surface of discontinuity 
at which the usual boundary conditions are obeyed. From the continuity of 
the normal component of B, 

B r 
a - B r 

b = 0	 (1) 

1Ifo tH o 

(T 

~ (a) 

(b) 

Figure 810.4.3 
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the continuity condition associated with Ampere's law 

(2) 

use of Ohm's law 
J K

E=-=-	 (3) 
U !1u 

results in 
H: - Hg = Kif> = !1uEIf> (4) 

The electric field obeys Faraday's law 

aB
VxE=-	 (5)at 

Only flux normal to the shell induces E in the sheet. By symmetry, E is <p-directed 

1 a ( .) aBr(v x E)r = -'-0 ao Elf> Sin 0 = --a	 (6)
rSIn	 t 

And thus, at the boundary 

1 a [. O[HG H b ] A aHr 
RsinO ao Sin 9 -	 9 = -J.&ouu---;jt (7) 

(b)	 Set 
Ho(t) = Re {Hoeiwt}[cosOi.. - sinOi9 ] (8) 

The H-field outside and inside the shell must be the gradient of a scalar 
potential 

.9. Acos 0 
Wa = -HorcosO + -2	 (9) 

r 

Wb = GrcosO	 (10) 

iio= -HosinO + ~ sinO	 (11) 
r 

iig = GsinO (12) 

2A
ii: = HocosO + 3'" cosO	 (13) 

r 

ii~ = -GcosO (14) 

From (1) 

a b 2A '" 
Br = Br ~ Ho + R3 = -0	 (15) 

Introducing (11), (12), and (13) into (7) we find 

1 a { . 2 ( 1 "')} . { 21 cos 0 }RsinO ao Sin 0 -Ho+ R3 -0 = -JWJ.&o!1u HocosO+ R3 (16) 



10-23 Solutions to Chapter 10 

from which we find A, using (15) to eliminate O. 

.A = _ iWIJot::..uR4 H o (17)
2(iwIJot::..uR + 3) 

.A provides the dipole term 

m =.A = -iwIJot::..uR4Ho 
411" 2(iwIJot::..uR + 3) 

(18) 

and thus 

(19) 

with 
IJout::..R

1'= :.....:...._
3 

(c) In the limit WT -+ 00, we find 

as in Example 8.4.4. 

10.4.4	 (a) The field is that of a dipole of dipole moment m = ia 

ia
W= --cosO	 (1)

411"r2 

(b) The normal component has to vanish on the shell. We add a uniform field 

sa
W= Ar cos 0 + --2 cosO	 (2)

411"r 

The normal component of Hat r = R is 

aWl (ia )-- =0= - A-2-- cosO 
ar r=R 411"R3 

and thus 

(3) 

and 

(see Fig. SI0.4.4). 
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Flpre 810.4.4 

(c) There is now also an outside field. For r < R 

ia 
qr = 411T2 cos 8 + A(t)r cos 8 (5) 

For r > R, 
qr = O(t) cos 8 

(6) 
r 2


The 8-components of B are


H(J = 4~:S sin(J + A sin (Jj r < R (7a) 

and 
H(J = 0 sin (Jj r > R (7b),.s


The normal component at r = R is


2ia )Hr = (-Rs - A cos(J (8a)
41f 

and 
20 

H r = RS cosO (8b) 

With the boundary condition (7) of Prob. 10.4.3, we have 

1 a [ . 2 (0 ia )] 2p.ol1u dO 
RsinO ao Sin 0 RS - 41fRs - A = ---w-cos 0d; (9) 

From the continuity of the normal component of B, we find 

(10)
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The equation for 0 becomes 

1 a [ . 2 e(o _ ia 20 _ 2ia)] = _ 2po li.u edO 
R4 sine ae sm 411" + 411" R3 cos dt (11) 

or 
dO ia 

T: -+0=-	 (12) 
m dt 411" 

with 'Tm = PouIi.R/3. IT we consider the steady state, then 

0= Re [Cei"'tj	 (13) 

C= 1 ia (14)
(1 + iw'Tm ) 411" 

A= 2ia _ 20 = 2ia iW'Tm (15)
411"R3 R3 411"R3 1 + ;W'Tm 

Jointly with (5) and (6), this determines \li. 

(d) When W'Tm -+ 00, we have C-+ 0, no outside field and A= 2ia/411"R3 which 
checks with (3). When W'Tm -+ 0, we have no shield and A -+ O. The shell 
behaves as if it were infinitely conducting in the limit W'Tm -+ 00. 

10.4.5	 (a) IT the current density varies so rapidly that the sheet is a perfect conductor, 
then it imposes the boundary condition (see Fig. 810.4.5), 

D'PoB=O	 at r=b 

., : . " .... . .: .": -.. . .. . 
.", . . ..... 

... :,'· ..· "	 0.··.. 
·' .... 

K = K(t) sin 2,pi• .--:-.-'"7',-.~ ' .. " 
• 0" : 

0••• 

':" .. 
... .." 

. .: 
• .' .' .~ " .' ~.' : I 

'0' • ' .. 

: ",: "'- ' : " ' :." ";. p. -+ 00 
- .• f.' 

Figure 810.4.5 
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Inside the high Il. material H = 0 to keep B finite. So at r = a, 

nxH=K 

Therefore 
-i.H~ = K(t) sin 24>i. 

Thus, the potential has to obey the boundary conditions 

8'iJ1 
-=0 at r=b	 (1)
8r 

_!8'iJ1 =-K(t)sin24> at r=a	 (2) 
r 84> 

In order to satisfy (2), we must pick a cos 24> dependence for 'iJI. To satisfy (1), one 
picks a [(r/b)2 + (b/r)2] cos 24> type solution. Guess 

Indeed, 
2

8'iJ1 [2r 2b ]a;: = A b2 - -;:3 cos 24> = 0 at r = b 

~: = -A[(r/b)2 + (b/r)2J2sin24> 

From (2), 

~[(a/b)2 + (b/a)2J2sin 24> = -K(t) sin 24> 
a 

Therefore, 
'iJI _ K(t)a [(r/b)2 + (b/r)2J 24> (3)- --2- [(a/b)2 + (b/a)2] cos 

(b)	 Now the current induced in the sheet is negligible, so all the field diffuses 
straight through. The sheet behaves as if it were not there at all. But at r = b 
we have J.' - co material, so H = 0 inside. Also, since now there is no K at 
r = b, we must have 

H~ = 0 at r = b 

It is dear that the following potential obeys the boundary condition at r = b 

'iJI = A[(r/b)2 - (b/r)2J cos 24> 

H~ = _! 8'iJ1 = ~[(r/b)2 - (b/r)2]2sin24> = 0 at r = b 
r 84> r


Again, applying (2)


A [(a/b)2 _ (b/a)2J2 sin 24> = -K(t) sin 24> 
a 
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Thus, 
\11 K(t)a l(r/b)2 - (b/r)2] 2~ (4)= --2-I(a/b)2 - (b/a)2] cos 

(c) At the sheet, the normal B is continuous assuming that l::.. is small Also, from 
Faraday's law I


dB

VxE=- (5)

dt 
Since only a time varying field normal to the sheet will induce currents, we 
are only interested in (V X E)r 

By symmetry there is only a z-component of E 

1 a E _ aBr 

-;a~ • --at: (6) 

One should note, however, that there are some subtleties involve in the deter
mination of the E-field. We do not attempt to match the boundary conditions 
on the coil surface. Such matching would require the addition of the gradient 
of a solution of Laplace's equation to Ep = i.E•. Such a field would induce 
surface charges in the conducting sheet, but otherwise not affect its current 
distribution. Remember that in MQS Eo BE is ignored which means that the 
charging currents responsible for the bUfCI-up of charge are negligible com
pared to the MQS currents flowing in the systems. 

Feom Ohm's law, J = uE. But, J = K/l::... 

1 a K. aBr

-; a~ l::..u =-at (7)


Applying the boundary conditions from Ampere's law, 

n X IHgaplr=b - H,.._oo] = K.i. 

So at r = b 

(8) 

Now guess a solution for \11 in the gap. Since we have two current sources (the 
windings at r = a and the sheet at r = b) and we do not necessarily know 
that they are in phase, we need to use superposition. This involves setting up 
the field due to each of the two sources individually 



10-28 Solutions to Chapter 10 

Here, A represents the field due to the current at r = b, and G is produced 
by the current at r = a. Apply the boundary condition (2), at r = a. We find 
from the tangential H-field 

2G(t) [(a/b)2 _ (b/a)2] = -K(t) 
a


Thus,

-aK(t) 

G(t) = 2[(a/b)2 - (b/a)2] (10) 

The normal and tangential components of H at r = b are 

2b 2a2 4 
Hr = -{A(t)[a2 + 63] + G(t),)COS2¢ (11) 

H", = {A~t) [(b/a)2 - (a/b)2]}2sin2¢ (12) 

From (8) 

lSo~Ub :¢ [A~t) [(b/a)2-(a/b)2]2sin 2¢] = {(:: + 2;2) a~~t) +~ ~~} cos2¢ 

Using (10), 

dA(t) A 2 [«(1/6)2 - (6/a)21 
---;j,t + (t) lSobAu [(a/b)2 + (b/a)2] 

a dK(t)
= [(a/b)2 + (b/a)2][(a/b)2 - (b/a)2] dt 

Simplifying, 
aA(t) + A(t) = DdK(t) (13)

at r at 

lJobAu [(a/b)2 + (b/a)2] 
r = -2- [(a/b)2 _ (b/a)2] (14) 

a 

D = [(a/b)2 + (b/a)211(a/b)2 _ (b/a)2] 
(15) 

dK/dt is a unit impulse function in time. The homogeneous solution for A is 

A(t) ex e- t / r (16) 

and the solution that has the proper discontinuity at t = 0 is 

A=DKo (17) 
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'If _ -aKa [(r/b)2 + (b/r)2] 2 . 
- 2 (a/b)2 + (b/a)2 cos ~ 

It is the same as if the surface currents spontaneously arose to buck out the 
field. At t -+ 00, e- t /.,. -+ 0 

-aKa [(r/b)2 - (b/r)2] 
'If = -2- (a/b)2 _ (b/a)2 cos 2~ 

This is when the field has enough time to diffuse through the shell 80 it is as 
if no surface currents were present. 

10.4.6 (a) When w is very high, the sheet behaves as a perfect conductor, and (see Fig. 
810.4.6) 

,T. _ bK[(r/a) + (a/r)J A. (1) 
'.I!' - [b a] cos."

ii+;; 

Then, indeed, a'If/ ar = 0 at r = a, and - t~ accounts for the surface current 
K. 

K{t) = KD{t) sin 41 

i " . 
" , 

'.p-+oo 
' .• I... . . . 

, ' . 

., : ' . ... " 
.. '. : .' . 

0.. • : '. :' .~ .: : • :.:: 0_ 
',.. 

Figure 810.4.6 
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(b) When w is very low, then a'JI/at/J = 0 at r = a and 

,T. _ bK!(rla) - (aIr)] A. (2)
'J!'- [~_~} cos¥' 

(c)	 As before in Prob. 10.4.5, we superimpose the field caused by the two current 
distributions 

'JI = {A(t)[ ~ - ~} + O(t)[!: - ~J} cos ~ (3)
arb r


The r- and ~-components of the field are:


Hr	 = -{A(t)[~ + ~] + O(t)[~ + :2]} cos~ (4) 

H4> = {A(t) [!: _~] + O(t) [!: _ ~]}sin~ (5)
r a r r b r


At r = b,

(6) 

and thus 

A(t) = ~o(t~ (7) 
ii-b 

At r = a, 
-H<t>lr=a = K. 

where K. is the current in the sheet. From (7) of the preceding problem 
solution, we have at r = a 

1 a H", aHr 
----- = -}Jo-	 (8) 

a a~ Au at

Thus, using (4) and (5) in (8):


O(t) [~ _ !} = -}JoAua{ ~ dA(t) + dOlt) [! + ~)} (9) 
a b a a dt dt b a2


Replacing A through (7) we obtain


dO + [~- ~}O(t) = 2b dKo(t) 
(10)

dt l-'oAua[~ +~] (a/b)2 - (6/a)2 dt 

Thus 

(11) 

with 

(12) 
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D= 2b 
(alb)2 - (bla)2 

The solution for a step of Ko(t) is 

C = DKoe-t/f' (13) 

DK -t/f' _ 2bKo -t/f'C(t)
-
- oe - (alb)2 _ (bla)2 e 

Combining all the expressions gives the final answer: 

'Ii = ;C0b {[!: -~] -2 [! - ~] e-t/f'}cos tP 
- - a- a r [- +-]a b b a 

For very short times tiT <: 1, one has 

which is the same as (1). For very long times exp -tiT = 0 and one obtains 
(2). 

10.5 MAGNETIC DIFFUSION LAWS 

10.5.1 (a) We first list the five equations (10.5.1)-(10.5.5) 

VxB=J	 (10.5.1) 

J =O'E (10.5.2) 

a v x E = - atp.B (10.5.3) 

V·p.B=O (10.5.4) 

V·J=O (10.5.5) 

Take the curl of (10.5.3) and use the identity 

(1) 

also note that 
v .J = V . O'E = o'V . E = 0	 (2) 

because 0' is uniform. Therefore,


2 a
-V E=--Vxp.B	 (3)
at 
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or 

-V2 (Jju) = -IJ~J (4)
at 

(b) Since J = i.J., equation (b) follows immediately from (4). We now use 
(10.5.S) 

a v x (Jju) = - atlJH 

But 

v x (J ju) = ! v x (i.J.(z, y)) = ! (ix a
8 J. - i,. a

8 J.)
u	 u y z 

and thus 
aH a (J.). 8 (J.).at = - 8y UIJ Ix + 8z UIJ I,. 

10.6 MAGNETIC DIFFUSION TRANSIENT RESPONSE 

10.6.1	 The expressions for H. and JfJ obey the diffusion equation, no matter what 
signs are assigned to the coefficients. The summations cancel the field -K"zjb and 
current density K"jb respectively, at t = a and eventually decay. IT one turns off a 
drive from a steady state, the current density is initially uniform, equal to K"jb and 
the field is equal to -K"zjb and then decays. But, the symmations with reversed 
signs have precisely that behavior. 

10.6.2 (a) The magnetic field is 
H=i.H. = K"	 (1) 

and there is no E-field, nor J within the block. 

(b)	 When the current-source is suddenly turned off, the H-field cannot disappear 
instantaneously; the current returns through the conducting block, but still 
circulates in the perfect conductor around the block. For this boundary value 
problem we must change the eigenfunctions. At z = 0, the field remains finite, 
because there is a circulation current terminating it. Thus we have, instead 
of (10.6.15), 

00 

H.= I: OnCOS(~:z)e-t/T"	 (2) 
n-odd 

with the decay times 
4IJub2 

Tn = (ml")2	 (S) 

Initially, H. is uniform, and thus, using orthogonality 

10 m1l" 2b • m1l" b
H. cos -zdz = K,,- sm - = -Om (4)

-b 2b m1l" 2 2 
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and thus

m-I( 4: )
C". = (-1)"- -

m", 
K p ; mood	 (5) 

..-I 4:	 (R"') tlH. = L: (-1)-'---K cos -:r; e- r ..R'" 26p
n-odd 

The current density is 

aHa 2 ~ . (R"') tlJ1I =--- = -1::(-1) , Kpsm -:r; e- r .. a:r; b	 2b 

H we pick a new origin at :r;' = :r; + b, then 

. (R"') . (R"', R"') R'" , . (R"')sm -:r; = sm -:r; - - = - cos -:r; sm 
2b 2b 2 2b 2 

~ (R"')= -(-1) :I cos -:r;' for R odd 
2b 

Interestingly, we find 

At t = 0 this is the expansion of a unit impulse function at :r:' = 0 of content 
-2Kp • All the current now :Hows through a thin sheet at the end of the block. 
The factor of 2 comes in because the problem has been solved as a SYMmetric 
problem at :r:' = 0, and thus half of the current ":Hows· in the "imagined· 
other half. 

10.1 SKIN EFFECT 

10.1.1	 (a) In order to find the impedance, we need to know the voltage tI, the complex 
current being k •. The voltage is (see Fig. 10.7.2) . 

(1) 

and, from Faraday's law 

(2) 

From (2) and (10.7.10) 

(3) 
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and thus the impedance is at :t = -b 

(4) 

But the factor in front is 

iawp.o _ a(l + i) (5)d(1 + j) - duo 

(b)	 When b <: 0, we can expand the exponentials and obtain 

Z = a(1 + i) 1 + (1 + iH + 1 - (1 + iH 
duo 1+ (1 + iH - 1+ (1 + iH (6)

a(1 + i) 1 a 
= duo (1 + iH = dub 

(c)	 When b ,. 0, then we need retain only the exponential exp[(1 + i)b/ol with 
the result: 

z = a(l + j) (7)
duo 

so that 
Re(Z) =

a 
duo


This looks like (6) with b replaced by o.


10.7'.2 (a) When the block is shorted, we have to add the two solutions exp±(1 + i)f 
so that they add at the termination. Indeed, if we set 

(1) 

then the E-:6.eld is, from 

(2) 

and thus through integration 

(3) 

and is indeed zero at z = o. In order to obtain Hz = k. at z = -b we adjust 
A so that 

(4) 
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(b) The high frequency distribution is governed by the exp -(1 + i) i(:I: < 0) and 
thus 

II "'" k e-(1+" f = k -(1+i) £j! (5) 
II - • e(l+i) k .e 

6 

This is the same expression as the one obtained from (10.7.10) by neglecting 
exp -(1 +i)i and exp(1 + i)b/o. 

(c) The impedance is obtained from (3) and (4) 

aE a(1 + i) e(1+i)b/6 - e-(1+i)b/6 
11 I - -'-:-~. ~~-;:------;-::~=

dK. z=-b - duo e(1+i)b/6 + e-(1+i)b/6 




