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Appendix G

SUMMARY OF PARTS I AND II

AND USEFUL THEOREMS

IDENTITIES

AxB.C=A.Bx C,

A x (B x C) = B(A. C)-- C(A- B)

V( + V) = VO + vv,

V. (A + B)= V .A + V- B,

Vx (A + B) =V x A + V x B,

V(#~Y) = # Vy + Y V#,

V. (vA)= A. VV + -VV A,

V.(AxB)= B.VxA--A.VxB,

V V V- V2= ,

V.V xA = 0,

V xV= 0,

V x (Vx A)= V(V - A) - V2 A,

(V x A) x A = (A. V)A - IV(A A),

V(A B) = (A- V)B + (B . V)A + A x (V x B) + B x (V x A)

V x (#A)= Vo x A + V Vx A,

V x (A x B) = A(V B) - B(V. A) + (B V)A - (A. V)B.
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THEOREMS

ý d = - ka.d

Divergence theorem Is A-n = nd .A dV

Stokes's theorem A dl =f(V x A).nda
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Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations

Magnetic field system

Electric field system

VX H = J

V.B = 0

V.J =0

aB
V x E =

Tt

Vx E=O

V D = p

v J,- - a

aD
V x H=J,f+

(1.1.1)

(1.1.11)

(1.1.12)

(1.1.14)

(1.1.15)

H -dl = fS J n da

BB.nda = 0

J - n da = 0

E' dl =-- B.nda

where E' = E + v X B

E . dl = 0

SD -nda = fvp, dV

f J3 ' n d a = - p d Vd

H'.dl = J, -n da + D . n da

where J' = Jf - pfv

H'=H- v x D

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)
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Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

Definition of Terminal Variables

Charee

A, = BB.nda

Current

i- f= Jy n'da
ýk"I

qk = f pidV

Voltage

vk E •dl

Terminal Conditions

dt

Ak = Ak(i1 ""i- ; geometry)

ik = ik '"... AN; geometry)

ik= dqk
dt

qk = qk( '...'VN; geometry)
v k = CV(ql '.qN; geometry)

Definitionof Terminal Variables



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical
and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N M
dWm = I ij dA, - f dxj

5j1 j1
N M

dW -= di + e dfe
j=1 -1

f5• = -- •-
Wax .

a (i. i; x1 .... X )f e= ax,

N

w,+ w.'=
J=1

N Jf
(a) dWe = v dq - fij dx

N I

(c) dWe >= q1 du 1+ :ý fe dxj
j=l j=1

Forces of Electric Origin, j = 1 ... , M

(eW,(ql, qN; Xl... . x ,)(e) fe = - wei qx .Sax.

Sa W(v,, . . . . .V; xl .... ,X3 1)(g) =i

Relation of Energy to Coenergy

(i) W + We = jqj
j=1

Energy and Coenergy from Electrical Terminal Relations

NlN (OWm i(A, ... j-,', 0 ... , 0; x ..... XM ) di' (k) W e .( . q 1,•, 0 ...,...

1 0The mechanical variables and can be regarded as theth force and displacement or theth torque T and angular displacement 0(n)

T7hemechanicalva riables fi and xi can be regarded as thejth force and displaement or trejth torque Tj and angular displacement Oj.



Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations Transformations Boundary Conditions

V x H = J, (1.1.1) H' = H (6.1.35) n x (H a - Hb) = Kf (6.2.14)

V. B = 0 (1.1.2) B' = B (6.1.37) n. (Ba - Bb) = 0 (6.2.7)
field V. J! = 0 (1.1.3) J,= J, (6.1.36) n . (Jfa - Jb) + Vy• K, = 0 (6.2.9)

systems aB
V x E = - (1.1.5) E' = E + vr x B (6.1.38) n X (E a - Eb) = vn(Ba - Bb) (6.2.22)

B = Io(H + M) (1.1.4) M' = M (6.1.39)

V X E = 0 (1.1.11) E' =E (6.1.54) n (E - Eb) =-0 (6.2.31)

V.D = pf (1.1.12) D' = D (6.1.55) n (Da -- Db) = a (6.2.33)

; = Pf (6.1.56)
Electric , ao

8 1. bElectric J= - (1.1.14) J, = J= - pvr (6.1.58) n * (Ja _- Jb)+ V~. K, = -V(pl
a ) - (6.2.36)field at at

systems D
V x H = Jf + (1.1.15) H' = H - v' X D (6.1.57) n X (Ha - Hb) = K + vn X [n x (Da - Db) ] (6.2.38)

D = CoE + P (1.1.13) P' = P (6.1.59)



Appendix G

From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system
xL, x 2, x. The component of a vector in the direction of an axis carries the
subscript of that axis. When we write F, we mean the mth component of the
vector F, where m can be 1, 2, or 3. When the index is repeated in a single
term, it implies summation over the three values of the index

aH, 8aH 8H, aH,

andand a a a a
H, = H1 + H1 2 + Hs H V.

8X, 8ax 8x ax
This illustrates the summation convention. On the other hand, 8H,/ax,
represents any one of the nine possible derivatives of components of H with
respect to coordinates. We define the Kronecker delta 68,,, which has the values

1, when m = n,
6,, = (8.1.7)

0, when m 0 n.
The component Tn,, of the stress tensor can be physically interpreted as the

mth component of the traction (force per unit area) applied to a surface with
a normal vector in the n-direction.

ix1

x3

X2

Fig. 8.2.2 Rectangular volume with center at (z@, x, Xs) showing the surfaces and direc-
tions of the stresses T,,.
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Summary of Parts I and II

The xl-component of the total force applied to the material within the
volume of Fig. 8.2.2 is

= T + , x3 Ax2 Ax3 - rT1 x -l I , x Ax2 Ax.

+12 1 2 + 3 T12\1. 2 2 1

+T (xiX2,z, x + 2 AxAX - T xx1,-4,- 2Ax3) Ax3\

(8.2.3)
Here we have evaluated the components of the stress tensor at the centers
of the surfaces on which they act; for example, the stress component T11
acting on the top surface is evaluated at a point having the same x2- and x3-
coordinates as the center of the volume but an x1 coordinate Ax1/2 above the
center.

The dimensions of the volume have already been specified as quite small.
In fact, we are interested in the limit as the dimensions go to zero. Con-
sequently, each component of the stress tensor is expanded in a Taylor series
about the value at the volume center with only linear terms in each series
retained to write (8.2.3) as

( Ax1 ITn1 Ax aT1
=T + T T11 + -1 a ,,AAx 3

2 8x 1 2 ax1

A,,x 2 T12 T 1 2+ Ax i-T Ax 1AxA+ L_ Ax,Ax,
+_x (T3 _.aT..__T13 +A 3 aTh) ATx1 Ax

2 ax, 2 ax3

or

f = + a +T-xAxAx 3. (8.2.4)

All terms in this expression are to be evaluated at the center of the volume
(x1 , x,, xa). We have thus verified our physical intuition that space-varying
stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x,-component of the force density F at the
point (x 1 , X2, x3) by writing

F1 = lim T11 + + aT 13 (8.2.5)
Ax 1 Ayx,,Ax-OAxAxAxz, ax, ax2 ax,

The limiting process makes the expansion of (8.2.4) exact. The summation
convention is used to write (8.2.5) as



Appendix G

F1 = T-  (8.2.6)
ax"

A similar process for the other two components of the force and force density
yields the general result that the mth component of the force density at a
point is

F, = (8.2.7)
ax"

Now suppose we wish to find the mth component of the total force f on
material contained within the volume V. We can find it by performing the
volume integration:

=jV d v iax
When we define the components of a vector A as

A1 = T, 1 , A2 = T. 2, A3 T=3, (8.1.14)

we can write (8.1.13) as

f, = aA dV f=V9 A) dV. (8.1.15)

We now use the divergence theorem to change the volume integral to a surface

integral,
integral, f= A.nda= Anda, (8.1.16)

where n, is the nth component of the outward-directed unit vector n normal
to the surface S and the surface S encloses the volume V. Substitution from
(8.1.14) back into this expression yields

f, = sTmn, da. (8.1.17)

where T,.n, is the mth component of the surface traction T.

The traction r is a vector. The components of this vector depend on the
coordinate system in which T is expressed; for example, the vector might be
directed in one of the coordinate directions (xj, a, x3), in which case there
would be only one nonzero component of r. In a second coordinate system
(x, x', x'), this same vector might have components in all of the coordinate
directions. Analyzing a vector into orthogonal components along the co-
ordinate axes is a familiar process. The components in a cartesian coordinate
system (x', x,' xD) are related to those in the cartesian coordinate system
(x,, x, x,) by the three equations

-r = a,17 ,, (8.2.10)

where apr is the cosine of the angle between the x' -axis and the xz,-axis.

_I~ ^_ _ I_



Summnunary of Parts I and II

Similarly, the components of the stress tensor transform according to the
equation

T~, = a,,ra,,Ts. (8.2.17)

This relation provides the rule for finding the components of the stress in the
primed coordinates, given the components in the unprimed coordinates. It
serves the same purpose in dealing with tensors that (8.2.10) serves in dealing
with vectors.

Equation 8.2.10 is the transformation of a vector r from an unprimed to a
primed coordinate system. There is, in general, nothing to distinguish the two
coordinate systems. We could just as well define a transformation from the
primed to the unprimed coordinates by

7r, = b,,g, (8.2.18)

where b,, is the cosine of the angle between the x,-axis and the x,-axis. But
b,, from the definition following (8.2.10), is then also

b,, - a,,; (8.2.19)

that is, the transformation which reverses the transformation (8.2.10) is

7-,= a,7,. (8.2.20)

Now we can establish an important property of the direction cosines a.,
by transforming the vector r to an arbitrary primed coordinate system and
then transforming the components r'- back to the unprimed system in which
they must be the same as those we started with. Equation 8.2.10 provides the
first transformation, whereas (8.2.20) provides the second; that is, we sub-
stitute (8.2.10) into (8.2.20) to obtain

7, = a,,arT. (8.2.21)

Remember that we are required to sum on both p and r; for example, consider
the case in which s = 1:

T1 = (alla11 + a21a21 + a31a31)r1
+ (a1la 1U + a2 ta2 2 + aaiae)r2 (8.2.22)

+ (a1 1 ai3 + asla2 3 + aa•a33)r 3 .

This relation must hold in general. We have not specified either a,, or 7,-.
Hence the second two bracketed quantities must vanish and the first must be
unity. We can express this fact much more concisely by stating that in general

a,,a, = 6,sr (8.2.23)



Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static
Magnetic and Electric Field Systems*

Stress Tensor T,,
Force Density Fm= 8T,nn Surface Force Density*

Description F m x=- (8.1.10) Tm = [Tmn]nn (8.4.2)

Force on media carrying Jf x B T., = pHAHn - 6emndpHkHk T = Kf x lp(H>
free current density Jy, Kf = n X [H]
p constant (8.1.3) (8.1.11) (8.4.3)

Force on media supporting pfE Tmn = eE?,En - BPnIeEiEk T = af(E)
free charge density pf, •, = n -[E]
e constant (8.3.3) (8.3.10) (8.4.8)

Force on free current plus Jf x B - ½H* H Vp T,, = pHHn
magnetization force in
which B = pH both before + V H.Hpy -- 6mn - HaHk
and after media are aP ap
deformed (8.5.38) (8.5.41)

Force on free charge plus pfE - JE *E VE T.n. = E,EEn
polarization force in which
D = E both before and + 1 V Ep - n - P E\E
after media are deformed +p a 1p

(8.5.45) (8.5.46)

Aa + Ab
* (A) -- 22

(A] Aa - A



Table 9.1 Modulus of Elasticity E and Density p for Representative Materials*

E-units of p-units of v,-unitst of
Material 10u N/m2 103 kg/m 3 m/sec

Aluminum (pure and alloy) 0.68-0.79 2.66-2.89 5100
Brass (60-70 % Cu, 40-30 % Zn) 1.0-1.1 8.36-8.51 3500
Copper 1.17-1.24 8.95-8.98 3700
Iron, cast (2.7-3.6% C) 0.89-1.45 6.96-7.35 4000
Steel (carbon and low alloy) 1.93-2.20 7.73-7.87 5100
Stainless steel (18•%Cr, 8%Ni) 1.93-2.06 7.65-7.93 5100
Titanium (pure and alloy) 1.06-1.14 4.52 4900
Glass 0.49-0.79 2.38-3.88 4500
Methyl methacrylate 0.024-0.034 1.16 1600
Polyethylene 1.38-3.8 x 10- 3 0.915 530
Rubber 0.79-4.1 x 10-i 0.99-1.245 46

* See S. H. Crandall, and N. C. Dahl, An Introductionto the MechanicsofSolids, McGraw-
Hill, New York, 1959, for a list of references for these constants and a list of these constants
in English units.
t Computed from average values of E and p.



Table 9.2 Summary of One-Dimensional Mechanical Continua

Introduced in Chapter 9

Thin Elastic Rod

a26 as26

P -2 = E-Es + F,

d8
T=E-

6-longitudinal (x) displacement
T-normal stress
p-mass density
E-modulus of elasticity

F,--longitudinal body force density

Wire or "String"

m-j- =f- 2 + S

-- transverse displacement
m--mass/unit length
f-tension (constant force)

S,-transverse force/unit length

Membrane

a / a,2e a,2 )

-- transverse displacement
am-surface mass density
S-tension in y- and z-directions

(constant force per unit length)
T,-z-directed force per unit area
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