MIT OpenCourseWare http://ocw.mit.edu

Electromechanical Dynamics

For any use or distribution of this textbook, please cite as follows:
Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics. 3 vols. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

Appendix G

SUMMARY OF PARTS I AND II AND USEFUL THEOREMS

IDENTITIES
$\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}=\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$,
$A \times(B \times C)=B(A \cdot C)-C(A \cdot B)$
$\nabla(\phi+\psi)=\nabla \phi+\nabla \psi$,
$\boldsymbol{\nabla} \cdot(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \cdot \mathbf{A}+\boldsymbol{\nabla} \cdot \mathbf{B}$,
$\nabla \times(\mathbf{A}+\mathbf{B})=\boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla} \times \mathbf{B}$,

$$
\boldsymbol{\nabla}(\phi \psi)=\phi \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \phi,
$$

$$
\boldsymbol{\nabla} \cdot(\psi \mathbf{A})=\mathbf{A} \cdot \boldsymbol{\nabla} \psi+\psi \boldsymbol{\nabla} \cdot \mathbf{A},
$$

$$
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot \boldsymbol{\nabla} \times \mathbf{A}-\mathbf{A} \cdot \boldsymbol{\nabla} \times \mathbf{B},
$$

$$
\nabla \cdot \nabla \phi=\nabla^{2} \phi
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times \mathbf{A}=0,
$$

$$
\nabla \times \nabla \phi=0,
$$

$$
\nabla \times(\nabla \times \mathbf{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A},
$$

$$
(\boldsymbol{\nabla} \times \mathbf{A}) \times \mathbf{A}=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{A}-\frac{1}{2} \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{A}),
$$

$$
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}+\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})
$$

$$
\boldsymbol{\nabla} \times(\phi \mathbf{A})=\boldsymbol{\nabla} \phi \times \mathbf{A}+\phi \boldsymbol{\nabla} \times \mathbf{A},
$$

$$
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} .
$$

THEOREMS

$$
\int_{a}^{b} \nabla \phi \cdot d \mathbf{I}=\phi_{b}-\phi_{a} .
$$

Divergence theorem

$$
\oint_{S} \mathbf{A} \cdot \mathbf{n} d a=\int_{V} \boldsymbol{\nabla} \cdot \mathbf{A} d V
$$

Stokes's theorem $\oint_{C} \mathbf{A} \cdot d \mathbf{l}=\int_{S}(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{n} d a$

Table 1.2 Summary of Quasi-Static Electromagnetic Equations

	Differential Equations		Integral Equations	
Magnetic field system	$\nabla \times \mathbf{H}=\mathbf{J}_{f}$	(1.1.1)	$\oint_{C} \mathbf{H} \cdot d \mathbf{l}=\int_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a$	(1.1.20)
	$\boldsymbol{\nabla} \cdot \mathbf{B}=0$	(1.1.2)	$\oint_{S} \mathbf{B} \cdot \mathbf{n} d a=0$	(1.1.21)
	$\boldsymbol{\nabla} \cdot \mathrm{J}_{f}=\mathbf{0}$	(1.1.3)	$\oint_{S} \mathbf{J}_{f} \cdot \mathbf{n} d a=0$	(1.1.22)
	$\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	(1.1.5)	$\oint_{C} \mathbf{E}^{\prime} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot \mathrm{n} d a$	(1.1.23)
Electric field system	$\boldsymbol{\nabla} \times \mathrm{E}=0$	(1.1.11)	$\begin{aligned} & \text { where } \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \times \mathbf{B} \\ & \oint_{C} \mathbf{E} \cdot d \mathbf{l}=0 \end{aligned}$	(1.1.24)
	$\boldsymbol{\nabla} \cdot \mathbf{D}=\rho_{f}$	(1.1.12)	$\oint_{S} \mathbf{D} \cdot \mathbf{n} d a=\int_{V} \rho_{f} d V$	(1.1.25)
	$\nabla \cdot J_{f}=-\frac{\partial_{\rho_{f}}}{\partial t}$	(1.1.14)	$\oint_{S} \mathbf{J}_{f}^{\prime} \cdot \mathbf{n} d a=-\frac{\dot{d}}{d t} \int_{V} \rho_{f} d V$	(1.1.26)
	$\nabla \times H=J_{f}+\frac{\partial D}{\partial t}$	(1.1.15)	$\begin{aligned} \oint_{C} \mathbf{H}^{\prime} \cdot d \mathrm{l} & =\int_{S} \mathrm{~J}_{f}^{\prime} \cdot \mathrm{n} d a+\frac{d}{d t} \int_{S} \mathrm{D} \cdot \mathrm{n} d a \\ \text { where } \mathbf{J}_{f}^{\prime} & =\mathbf{J}_{f}-\rho_{f} \mathbf{v} \\ \mathbf{H}^{\prime} & =\mathbf{H}-\mathbf{v} \times \mathbf{D} \end{aligned}$	(1.1.27)

Table 2.1 Summary of Terminal Variables and Terminal Relations

Electric field system

Definition of Terminal Variables

Flux

$$
\lambda_{k}=\int_{\mathbf{S}_{k}} \mathbf{B} \cdot \mathbf{n} d a
$$

Current

$$
i_{k}=\int_{S_{k}^{\prime}} \mathbf{J}_{f} \cdot \mathbf{n}^{\prime} d a
$$

Terminal Conditions

$$
\begin{aligned}
v_{k} & =\frac{d \lambda_{k}}{d t} \\
\lambda_{k} & =\lambda_{k}\left(i_{1} \cdots i_{N} ; \text { geometry }\right) \\
i_{k} & =i_{k}\left(\lambda_{1} \cdots \lambda_{N} ; \text { geometry }\right)
\end{aligned}
$$

Charge

$$
q_{k}=\int_{V_{k}} \rho_{f} d V
$$

Voltage

$$
v_{k}=\int_{a}^{b} \mathbf{E} \cdot d \mathbf{l}
$$

$$
i_{k}=\frac{d q_{k}}{d t}
$$

$$
q_{k}=q_{k}\left(v_{1} \cdots v_{N} ; \text { geometry }\right)
$$

$$
v_{k}=v_{k}\left(q_{1} \cdots q_{N} ; \text { geometry }\right)
$$

Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical and M Mechanical Terminal Pairs*

Magnetic Field Systems
Electric Field Systems
Conservation of Energy

$$
\begin{align*}
& d W_{m}=\sum_{j=1}^{N} i_{j} d \lambda_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j} \tag{b}\\
& d W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} d i_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j} \tag{d}
\end{align*}
$$

(a) $\quad d W_{e}=\sum_{j=1}^{N} v_{j} d q_{j}-\sum_{j=1}^{M} f_{j}^{e} d x_{j}$
(c) $d W_{e}^{\prime}=\sum_{j=1}^{N} q_{j} d v_{j}+\sum_{j=1}^{M} f_{j}^{e} d x_{j}$

Forces of Electric Origin, $j=1, \ldots, M$

$$
\begin{array}{ll}
f_{j}^{e}=-\frac{\partial W_{m}\left(\lambda_{1}, \ldots, \lambda_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} & \text { (e) } \quad f_{j}^{e}=-\frac{\partial W_{e}\left(q_{1}, \ldots, q_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} \tag{f}\\
f_{j}^{e}=\frac{\partial W_{m}^{\prime}\left(i_{1}, \ldots, i_{N} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}} & \text { (g) } \quad f_{j}^{e}=\frac{\partial W_{e}^{\prime}\left(v_{1}, \ldots, v_{\mathrm{N}} ; x_{1}, \ldots, x_{M}\right)}{\partial x_{j}}
\end{array}
$$

Relation of Energy to Coenergy

$$
\begin{equation*}
W_{m}+W_{m}^{\prime}=\sum_{j=1}^{N} \lambda_{j} i_{j} \quad \text { (i) } \quad W_{e}+W_{e}^{\prime}=\sum_{j=1}^{N} v_{j} q_{j} \tag{i}
\end{equation*}
$$

Energy and Coenergy from Electrical Terminal Relations

$$
\begin{align*}
& W_{m}=\sum_{j=1}^{N} \int_{0}^{\lambda_{j}} i_{j}\left(\lambda_{1}, \ldots, \lambda_{j-1}, \lambda_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d \lambda_{j}^{\prime} \quad \text { (k) } \quad W_{e}=\sum_{j=1}^{N} \int_{0}^{q_{j}} v_{j}\left(q_{1}, \ldots, q_{j-1}, q_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d q_{j}^{\prime} \tag{1}\\
& W_{m}^{\prime}=\sum_{j=1}^{N} \int_{0}^{i_{j}} \lambda_{j}\left(i_{1}, \ldots, i_{j-1}, i_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d i_{j}^{\prime} \quad \text { (m) } \quad W_{e}^{\prime}=\sum_{j=1}^{N} \int_{0}^{v_{j}} q_{j}\left(v_{1}, \ldots, v_{j-1}, v_{j}^{\prime}, 0, \ldots, 0 ; x_{1}, \ldots, x_{M}\right) d v_{j}^{\prime} \tag{n}
\end{align*}
$$

* The mechanical variables f_{j} and x_{j} can be regarded as the j th force and displacement or the j th torque T_{j} and angular displacement θ_{j}.

Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with Moving Media

	Differential Equations		Transformations		Boundary Conditions	
Magnetic field systems §	$\begin{aligned} & \nabla \times \mathbf{H}=\mathbf{J}_{f} \\ & \nabla \cdot \mathbf{B}=0 \\ & \nabla \cdot \mathrm{~J}_{f}=0 \\ & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\ & \mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \end{aligned}$	$\begin{aligned} & (1.1 .1) \\ & (1.1 .2) \\ & (1.1 .3) \\ & (1.1 .5) \\ & (1.1 .4) \end{aligned}$	$\begin{aligned} & \mathbf{H}^{\prime}=\mathbf{H} \\ & \mathbf{B}^{\prime}=\mathbf{B} \\ & \mathbf{J}_{f}^{\prime}=\mathbf{J}_{f} \\ & \mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v}^{\mathbf{r}} \times \mathbf{B} \\ & \mathbf{M}^{\prime}=\mathbf{M} \end{aligned}$	$\begin{aligned} & (6.1 .35) \\ & (6.1 .37) \\ & (6.1 .36) \\ & (6.1 .38) \\ & (6.1 .39) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=\mathbf{K}_{f} \\ & \mathbf{n} \cdot\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right)=0 \\ & \mathbf{n} \cdot\left(\mathbf{J}_{f}^{a}-\mathbf{J}_{f}^{b}\right)+\nabla_{\mathbf{\Sigma}} \cdot \mathbf{K}_{f}=0 \\ & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=v_{n}\left(\mathbf{B}^{a}-\mathbf{B}^{b}\right) \end{aligned}$	(6.2.14) (6.2.7) (6.2.9) (6.2.22)
Electric field systems	$\begin{aligned} & \nabla \times \mathbf{E}=0 \\ & \boldsymbol{\nabla} \cdot \mathbf{D}=\rho_{f} \\ & \boldsymbol{\nabla} \cdot \mathbf{J}_{f}=-\frac{\partial \rho_{f}}{\partial t} \\ & \boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t} \\ & \mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \end{aligned}$	$\begin{aligned} & (1.1 .11) \\ & (1.1 .12) \\ & (1.1 .14) \\ & (1.1 .15) \\ & (1.1 .13) \end{aligned}$	$\begin{aligned} & \mathbf{E}^{\prime}=\mathbf{E} \\ & \mathbf{D}^{\prime}=\mathbf{D} \\ & \rho_{f}^{\prime}=\rho_{f} \\ & \mathbf{J}_{f}^{\prime}=\mathbf{J}_{f}-\rho_{f} \mathbf{v}^{r} \\ & \mathbf{H}^{\prime}=\mathbf{H}-\mathbf{v}^{r} \times \mathbf{D} \\ & \mathbf{P}^{\prime}=\mathbf{P} \end{aligned}$	$\begin{aligned} & (6.1 .54) \\ & (6.1 .55) \\ & (6.1 .56) \\ & (6.1 .58) \\ & (6.1 .57) \\ & (6.1 .59) \end{aligned}$	$\begin{aligned} & \mathbf{n} \times\left(\mathbf{E}^{a}-\mathbf{E}^{b}\right)=0 \\ & \mathbf{n} \cdot\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)=\sigma_{f} \end{aligned}$ $\begin{aligned} & \mathbf{n} \cdot\left(\mathbf{J}_{f}^{a}-\mathbf{J}_{f}^{b}\right)+\nabla_{\mathbf{E}} \cdot \mathbf{K}_{f}=v_{n}\left(\rho_{f}^{a}-\rho_{f}^{b}\right)-\frac{\partial \sigma_{f}}{\partial t} \\ & \mathbf{n} \times\left(\mathbf{H}^{a}-\mathbf{H}^{b}\right)=\mathbf{K}_{f}+v_{n} \mathbf{n} \times\left[\mathbf{n} \times\left(\mathbf{D}^{a}-\mathbf{D}^{b}\right)\right] \end{aligned}$	$\begin{aligned} & (6.2 .31) \\ & (6.2 .33) \\ & (6.2 .36) \\ & (6.2 .38) \end{aligned}$

From Chapter 8; The Stress Tensor and Related Tensor Concepts

In what follows we assume a right-hand cartesian coordinate system x_{1}, x_{2}, x_{3}. The component of a vector in the direction of an axis carries the subscript of that axis. When we write F_{m} we mean the m th component of the vector F, where m can be 1,2 , or 3 . When the index is repeated in a single term, it implies summation over the three values of the index
and

$$
\frac{\partial H_{n}}{\partial x_{n}}=\frac{\partial H_{1}}{\partial x_{1}}+\frac{\partial H_{2}}{\partial x_{2}}+\frac{\partial H_{3}}{\partial x_{3}}=\boldsymbol{\nabla} \cdot \mathbf{H}
$$

$$
H_{n} \frac{\partial}{\partial x_{n}}=H_{1} \frac{\partial}{\partial x_{1}}+H_{2} \frac{\partial}{\partial x_{2}}+H_{3} \frac{\partial}{\partial x_{3}}=\mathbf{H} \cdot \nabla .
$$

This illustrates the summation convention. On the other hand, $\partial H_{m} / \partial x_{n}$ represents any one of the nine possible derivatives of components of \mathbf{H} with respect to coordinates. We define the Kronecker delta $\delta_{m n}$ which has the values

$$
\delta_{m n}=\left\{\begin{array}{l}
1, \text { when } m=n \tag{8.1.7}\\
0, \text { when } m \neq n
\end{array}\right.
$$

The component $T_{m n}$ of the stress tensor can be physically interpreted as the mth component of the traction (force per unit area) applied to a surface with a normal vector in the n-direction.

Fig. 8.2.2 Rectangular volume with center at $\left(x_{1}, x_{2}, x_{3}\right)$ showing the surfaces and directions of the stresses $\boldsymbol{T}_{\boldsymbol{m} \boldsymbol{n}}$.

The x_{1}-component of the total force applied to the material within the volume of Fig. 8.2.2 is

$$
\begin{align*}
f_{1}= & T_{11}\left(x_{1}+\frac{\Delta x_{1}}{2}, x_{2}, x_{3}\right) \Delta x_{2} \Delta x_{3}-T_{11}\left(x_{1}-\frac{\Delta x_{1}}{2}, x_{2}, x_{3}\right) \Delta x_{2} \Delta x_{3} \\
& +T_{12}\left(x_{1}, x_{2}+\frac{\Delta x_{2}}{2}, x_{3}\right) \Delta x_{1} \Delta x_{3}-T_{12}\left(x_{1}, x_{2}-\frac{\Delta x_{2}}{2}, x_{3}\right) \Delta x_{1} \Delta x_{3} \\
& +T_{13}\left(x_{1}, x_{2}, x_{3}+\frac{\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2}-T_{13}\left(x_{1}, x_{2}, x_{3}-\frac{\Delta x_{3}}{2}\right) \Delta x_{1} \Delta x_{2} . \tag{8.2.3}
\end{align*}
$$

Here we have evaluated the components of the stress tensor at the centers of the surfaces on which they act; for example, the stress component T_{11} acting on the top surface is evaluated at a point having the same x_{2} - and x_{3} coordinates as the center of the volume but an x_{1} coordinate $\Delta x_{1} / 2$ above the center.

The dimensions of the volume have already been specified as quite small. In fact, we are interested in the limit as the dimensions go to zero. Consequently, each component of the stress tensor is expanded in a Taylor series about the value at the volume center with only linear terms in each series retained to write (8.2.3) as

$$
\begin{aligned}
f_{1}= & \left(T_{11}+\frac{\Delta x_{1}}{2} \frac{\partial T_{11}}{\partial x_{1}}-T_{11}+\frac{\Delta x_{1}}{2} \frac{\partial T_{11}}{\partial x_{1}}\right) \Delta x_{2} \Delta x_{3} \\
& +\left(T_{12}+\frac{\Delta x_{2}}{2} \frac{\partial T_{12}}{\partial x_{2}}-T_{12}+\frac{\Delta x_{2}}{2} \frac{\partial T_{12}}{\partial x_{2}}\right) \Delta x_{1} \Delta x_{3} \\
& +\left(T_{13}+\frac{\Delta x_{3}}{2} \frac{\partial T_{13}}{\partial x_{3}}-T_{13}+\frac{\Delta x_{3}}{2} \frac{\partial T_{13}}{\partial x_{3}}\right) \Delta x_{1} \Delta x_{2}
\end{aligned}
$$

or

$$
\begin{equation*}
f_{1}=\left(\frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}}\right) \Delta x_{1} \Delta x_{2} \Delta x_{3} . \tag{8.2.4}
\end{equation*}
$$

All terms in this expression are to be evaluated at the center of the volume (x_{1}, x_{2}, x_{3}). We have thus verified our physical intuition that space-varying stress tensor components are necessary to obtain a net force.

From (8.2.4) we can obtain the x_{1}-component of the force density \mathbf{F} at the point $\left(x_{1}, x_{2}, x_{3}\right)$ by writing

$$
\begin{equation*}
F_{1}=\lim _{\Delta x_{1}, \Delta x_{2}, \Delta x_{3} \rightarrow 0} \frac{f_{1}}{\Delta x_{1} \Delta x_{2} \Delta x_{3}}=\frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}} . \tag{8.2.5}
\end{equation*}
$$

The limiting process makes the expansion of (8.2.4) exact. The summation convention is used to write (8.2.5) as

$$
\begin{equation*}
F_{1}=\frac{\partial T_{1 n}}{\partial x_{n}} . \tag{8.2.6}
\end{equation*}
$$

A similar process for the other two components of the force and force density yields the general result that the m th component of the force density at a point is

$$
\begin{equation*}
F_{m}=\frac{\partial T_{m n}}{\partial x_{n}} . \tag{8.2.7}
\end{equation*}
$$

Now suppose we wish to find the m th component of the total force f on material contained within the volume V. We can find it by performing the volume integration:

$$
\begin{equation*}
f_{m}=\int_{V} F_{m} d V=\int_{V} \frac{\partial T_{m n}}{\partial x_{n}} d V \tag{8.1.13}
\end{equation*}
$$

When we define the components of a vector A as

$$
\begin{equation*}
A_{1}=T_{m 1}, \quad A_{2}=T_{m 2}, \quad A_{3}=T_{m 3} \tag{8.1.14}
\end{equation*}
$$

we can write (8.1.13) as

$$
\begin{equation*}
f_{m}=\int_{V} \frac{\partial A_{n}}{\partial x_{n}} d V=\int_{V}(\nabla \cdot \mathrm{~A}) d V \tag{8.1.15}
\end{equation*}
$$

We now use the divergence theorem to change the volume integral to a surface integral,

$$
\begin{equation*}
f_{m}=\oint_{S} \mathbf{A} \cdot \mathrm{n} d a=\oint_{S} A_{n} n_{n} d a \tag{8.1.16}
\end{equation*}
$$

where n_{n} is the nth component of the outward-directed unit vector n normal to the surface S and the surface S encloses the volume V. Substitution from (8.1.14) back into this expression yields

$$
\begin{equation*}
f_{m}=\oint_{S} T_{m n} n_{n} d a \tag{8.1.17}
\end{equation*}
$$

where $T_{m n} n_{n}$ is the m th component of the surface traction τ.
The traction τ is a vector. The components of this vector depend on the coordinate system in which τ is expressed; for example, the vector might be directed in one of the coordinate directions (x_{1}, x_{2}, x_{3}), in which case there would be only one nonzero component of τ. In a second coordinate system ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$), this same vector might have components in all of the coordinate directions. Analyzing a vector into orthogonal components along the coordinate axes is a familiar process. The components in a cartesian coordinate system ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) are related to those in the cartesian coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$ by the three equations

$$
\begin{equation*}
\tau_{p}^{\prime}=a_{p r} \tau_{r}, \tag{8.2.10}
\end{equation*}
$$

where $a_{p r}$ is the cosine of the angle between the $x_{p}^{\prime}-a x i s$ and the x_{r}-axis.

Similarly, the components of the stress tensor transform according to the equation

$$
\begin{equation*}
T_{p q}^{\prime}=a_{p r} a_{q s} T_{r s} \tag{8.2.17}
\end{equation*}
$$

This relation provides the rule for finding the components of the stress in the primed coordinates, given the components in the unprimed coordinates. It serves the same purpose in dealing with tensors that (8.2.10) serves in dealing with vectors.

Equation 8.2.10 is the transformation of a vector τ from an unprimed to a primed coordinate system. There is, in general, nothing to distinguish the two coordinate systems. We could just as well define a transformation from the primed to the unprimed coordinates by

$$
\begin{equation*}
\tau_{s}=b_{s p} \tau_{p}^{\prime} \tag{8.2.18}
\end{equation*}
$$

where $b_{s p}$ is the cosine of the angle between the x_{s}-axis and the x_{p}^{\prime}-axis. But $b_{s p}$, from the definition following (8.2.10), is then also

$$
\begin{equation*}
b_{s p} \equiv a_{p s} \tag{8.2.19}
\end{equation*}
$$

that is, the transformation which reverses the transformation (8.2.10) is

$$
\begin{equation*}
\tau_{s}=a_{p s} \tau_{p}^{\prime} \tag{8.2.20}
\end{equation*}
$$

Now we can establish an important property of the direction cosines $a_{p s}$ by transforming the vector τ to an arbitrary primed coordinate system and then transforming the components τ_{m}^{\prime} back to the unprimed system in which they must be the same as those we started with. Equation 8.2 .10 provides the first transformation, whereas (8.2.20) provides the second; that is, we substitute (8.2.10) into (8.2.20) to obtain

$$
\begin{equation*}
\tau_{s}=a_{p s} a_{p r} \tau_{r} \tag{8.2.21}
\end{equation*}
$$

Remember that we are required to sum on both p and r; for example, consider the case in which $s=1$:

$$
\begin{align*}
\tau_{1} & =\left(a_{11} a_{11}+a_{21} a_{21}+a_{31} a_{31}\right) \tau_{1} \\
& +\left(a_{11} a_{12}+a_{21} a_{22}+a_{31} a_{32}\right) \tau_{2} \tag{8.2.22}\\
& +\left(a_{11} a_{13}+a_{21} a_{23}+a_{31} a_{33}\right) \tau_{3}
\end{align*}
$$

This relation must hold in general. We have not specified either $a_{p s}$ or τ_{m}. Hence the second two bracketed quantities must vanish and the first must be unity. We can express this fact much more concisely by stating that in general

$$
\begin{equation*}
a_{p s} a_{p r}=\delta_{s r} \tag{8.2.23}
\end{equation*}
$$

Table 8.1 Electromagnetic Force Densities, Stress Tensors, and Surface Force Densities for Quasi-static Magnetic and Electric Field Systems*

Description	Force Density	Stress Tensor $\boldsymbol{T}_{\boldsymbol{m} \boldsymbol{n}}$ $F_{m}=\frac{\partial T_{m n}}{\partial x_{n}}(8.1 .10)$	Surface Force Density* $T_{m}=\left[T_{m n}\right] n_{n} \text { (8.4.2) }$
Force on media carrying free current density \mathbf{J}_{f}, μ constant	$\begin{aligned} & \mathbf{J}_{f} \times \mathbf{B} \\ & (8.1 .3) \end{aligned}$	$\begin{aligned} & T_{m n}=\mu H_{m} H_{n}-\delta_{m n} \frac{1}{\frac{1}{2}} \mu H_{k} H_{k} \\ & \text { (8.1.11) } \end{aligned}$	$\begin{aligned} & \mathbf{T}=\mathbf{K}_{f} \times \mu\langle\mathbf{H}\rangle \\ & \mathbf{K}_{f}=\mathbf{n} \times[\mathbf{H}] \\ &(8.4 .3) \end{aligned}$
Force on media supporting free charge density ρ_{f}, ϵ constant	$p_{f}{ }^{\mathbf{E}}$ (8.3.3)	$\begin{aligned} & T_{m n}=\epsilon E_{m} E_{n}-\delta_{m n^{\frac{1}{2}} \epsilon E_{k}} E_{k} \\ & \text { (8.3.10) } \end{aligned}$	$\begin{aligned} & \mathbf{T}=\sigma_{f}(\mathbf{E}\rangle \\ & \sigma_{f}=\mathbf{n} \cdot[\epsilon \mathrm{E}] \\ &(8.4 .8) \end{aligned}$
Force on free current plus magnetization force in which $\mathbf{B}=\mu \mathbf{H}$ both before and after media are deformed	$\begin{aligned} & \mathbf{J}_{f} \times \mathbf{B}-\frac{1}{2} H \cdot H \nabla \boldsymbol{H} \\ & +\frac{1}{2} \nabla\left(H \cdot H \rho \frac{\partial \mu}{\partial \rho}\right) \\ & \text { (8.5.38) } \end{aligned}$	$\begin{aligned} & T_{m n}=\mu H_{m} H_{n} \\ & -\frac{1}{2} \delta_{m n}\left(\mu-\rho \frac{\partial \mu}{\partial \rho}\right) H_{k} H_{k} \\ & \text { (8.5.41) } \end{aligned}$	
Force on free charge plus polarization force in which $\mathrm{D}=\epsilon \mathrm{E}$ both before and after media are deformed	$\begin{aligned} & \rho_{f} \mathbf{E}-\frac{1}{8} \mathbf{E} \cdot \mathbf{E} \boldsymbol{\nabla}_{\epsilon} \\ & +\frac{1}{2} \nabla\left(\mathbf{E} \cdot \mathbf{E} \rho \frac{\partial_{\epsilon}}{\partial_{\rho}}\right) \\ & \text { (8.5.45) } \end{aligned}$	$\begin{aligned} & T_{m n}=\epsilon E_{m} E_{n} \\ & -\frac{1}{2} \delta_{m n}\left(\epsilon-\rho \frac{\partial \epsilon}{\partial \rho}\right) E_{k} E_{k} \\ & \text { (8.5.46) } \end{aligned}$	

$*\langle\mathbf{A}\rangle \equiv \frac{\mathbf{A}^{a}+\mathbf{A}^{b}}{2}$
$[\mathbf{A}] \equiv \mathbf{A}^{a}-\mathbf{A}^{b}$

Table 9.1 Modulus of Elasticity \boldsymbol{E} and Density $\boldsymbol{\rho}$ for Representative Materials*

Material	E-units of $10^{11} \mathrm{~N} / \mathrm{m}^{2}$	ρ-units of $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	v_{p}-units \dagger of $\mathrm{m} / \mathrm{sec}$
Aluminum (pure and alloy)	$0.68-0.79$	$2.66-2.89$	5100
Brass $(60-70 \% \mathrm{Cu}, 40-30 \% \mathrm{Zn}$)	$1.0-1.1$	$8.36-8.51$	3500
Copper	$1.17-1.24$	$8.95-8.98$	3700
Iron, cast $(2.7-3.6 \% \mathrm{C}$)	$0.89-1.45$	$6.96-7.35$	4000
Steel (carbon and low alloy)	$1.93-2.20$	$7.73-7.87$	5100
Stainless steel ($18 \% \mathrm{Cr}, 8 \% \mathrm{Ni}$)	$1.93-2.06$	$7.65-7.93$	5100
Titanium (pure and alloy)	$1.06-1.14$	4.52	4900
Glass	$0.49-0.79$	$2.38-3.88$	4500
Methyl methacrylate	$0.024-0.034$	1.16	1600
Polyethylene	$1.38-3.8 \times 10^{-3}$	0.915	530
Rubber	$0.79-4.1 \times 10^{-5}$	$0.99-1.245$	46

[^0]Table 9.2 Summary of One-Dimensional Mechanical Continua Introduced in Chapter 9

Thin Elastic Rod
$\rho \frac{\partial^{2} \delta}{\partial t^{2}}=E \frac{\partial^{2} \delta}{\partial x^{2}}+F_{x}$
$T=E \frac{\partial \delta}{\partial x}$
δ-longitudinal (x) displacement
$T-$ normal stress
$\rho-$ mass density
E-modulus of elasticity
F_{x}-longitudinal body force density
Wire or "String"
$m \frac{\partial^{2} \xi}{\partial t^{2}}=f \frac{\partial^{2} \xi}{\partial x^{2}}+S_{z}$
ξ-transverse displacement
m-mass/unit length
f-tension (constant force)
S_{z}-transverse force/unit length
Membrane
$\sigma_{m} \frac{\partial^{2} \xi}{\partial t^{2}}=S\left(\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \xi}{\partial y^{2}}\right)+T_{z}$
ξ-transverse displacement
σ_{m}-surface mass density
S-tension in y - and z-directions (constant force per unit length)
$T_{z}-z$-directed force per unit area

$$
(-14-B) \cdots
$$

[^0]: * See S. H. Crandall, and N. C. Dahl, An Introduction to the Mechanics of Solids, McGrawHill, New York, 1959, for a list of references for these constants and a list of these constants in English units.
 \dagger Computed from average values of E and ρ.

