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Chapter 9

SIMPLE ELASTIC CONTINUA

9.0 INTRODUCTION

The study of the effects of motion on electric and magnetic fields (Chapter
7) and ofelectromagnetic force densities (Chapter 8)provides the background
necessary for an introduction to the electromechanics of continuous media.
To someone familiar with the dynamics of continuous media this is a pre-
tentious statement, for it implies that the description of distributed mechan-
ical systems requires only a minor addition to the largely electromagnetic
considerations so far introduced. In general, this is far from the case; for
example, does the mechanical medium consist of a solid or a fluid? In either
case the equations of motion vary considerably with the particular fluid or
solid under study. These equations generally involve three-dimensional
deformations, hence are likely to be at least as complicated as the electro-
magnetic field equations if not more so.

Fortunately, many of the most significant and practical interactions with
continuous media can be modeled in terms of one or two-dimensional
structures that not only retain the salient features of the three-dimensional
dynamics but represent idealizations that we should like to approach in
practice. In this and the next chapter attention is confined to situations in
which the mechanical side of the electromechanical problem takes the form
of one of two simple models: the thin rod subject to longitudinal motions and
wires and membranes undergoing transverse motions. The derivation of the
one- and two-dimensional equations of motion for these simple cases serves
to illustrate the essential steps required to write the more general expressions
for elastic media and fluids, as undertaken in Chapters 11 and 12. At the
same time the continuum electromechanical dynamics studied in this and the
next chapter give a preview of types of dynamics found in acoustics, fluid
dynamics, electron beam-plasma dynamics, magnetohydrodynamics, electro-
hydrodynamics, and microwave magnetics.

In this chapter the discussion is limited to electromechanical interactions
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with continuous media that occur through boundary conditions representable
by terminal pairs. In Chapter 10 we consider physical situations in which the
electromechanical coupling is itself distributed and in which our lumped
parameter concept of a terminal pair can no longer account for the coupling.

9.1 LONGITUDINAL MOTION OF A THIN ROD

Longitudinal motion of a thin elastic rod provides a logical first topic in
discussing the dynamics of elastic continua. This is true because we emphasize
the wavelike nature of the dynamics; and in a thin rod longitudinal waves
have a particularly simple form. As we shall see, waves in a thin rod can
propagate without changing their shapes; hence they can be understood by
means of comparatively simple mathematical techniques. This distortion-free
behavior of the thin rod is used in applications such as acoustic delay lines
and electromechanical filters in which the properties of the electromechanical
system are especially attractive. We discuss some applications later in this
section.

To describe longitudinal motion in an elastic rod we must make a mathe-
matical model. This process consists essentially of two steps: (a) a mathe-
matical description of force equilibrium for a small element of the rod and
(b) a description of the elastic property of the rod.

We consider the long thin rod shown in Fig. 9.1.1a. The rod has a uniform
cross section of area A perpendicular to the longitudinal (xl)-direction.
We apply forces in the xj-direction and observe motion in the x1-direction.
By "thin" we mean that the dimensions of the rod perpendicular to x1 are
small enough that effects of any transverse motion are negligible. The

f=-I1 T

xl x, + --p
X1 2 X1 x 2+

(b)
Fig. 9.1.1 Thin elastic rod with axis in the xx-direction and uniform cross section of area A:
(a) the rod; (b) force and tractions applied to an element of length Ax1 centered at xz.



Longitudinal Motion of a Thin Rod

criterion for making this assumption is obtained from the treatment of three-
dimensional elasticity in Chapter 11.

To describe force equilibrium at each point along the rod we write Newton's
second law for a small element of length Azx centered at xx, as illustrated in
Fig. 9.1.lb. There are two kinds of forces applied to this element of material:
body forces, such as those due to gravity and electromagnetic fields, that act
throughout the volume of the element and surface forces applied to the
transverse surfaces of the element by the adjacent material.

When we specify a volume force density of magnitude F, in the xx-direction
and require that over the length Ax, the force density shall not vary appreci-
ably, we can write the total body force f as

fx = F1A Azx. (9.1.1)

This force is indicated in Fig. 9.1.lb
The forces applied at the surfaces of the element by adjacent matter are

described in the following way. Consider first the situation in Fig. 9.1.2a
in which a rod is at rest and subjected to equal and opposite forces of magni-
tudef. When an imaginary transverse cut is made in the rod, as illustrated
in Fig. 9.1.2b, each segment must still be in equilibrium. If there are no
externally applied body forces, the force f is applied to the two pieces of
material at the cut, as shown. The vector force per unit area (or traction r,
as discussed in Section 8.2.1) applied to the left-hand segment by the right-
hand segment is

7 = il - . (9.1.2)
A

-'if

Aiff
x1x

(b)
Fig. 9.1.2 An elastic rod in static equilibrium: (a) the rod with applied forces; (b) equi-
librium conditions at an imaginary cut.
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The traction applied to the right-hand segment by the left-hand segment is

T = - i- . (9.1.3)
A

We define the stress T1, (as in Section 8.2.1) transmitted by the rod as

Ti A= . (9.1.4)

Then we obtain the xl-component of the mechanical traction rl as

T1 = T11n1, (9.1.5)

where n, is the magnitude of the x1-component of the outwarddirected unit
normal vector for the segment of rod to which the traction is applied. For
this one-dimensional case, illustrated in Fig. 9.1.2, n, = +1 for the left-hand
segment and n, = -1 for the right-hand segment. Equation 9.1.5 will be
recognized as a simple special case of (8.2.8). Positive stress (T1 , > 0)
indicates tension and negative stress (T,1 < 0) indicates compression.

Although our arguments have been based on a static experiment with no
body forces applied, we can extend these definitions to the general case in
which there are body forces that vary with space (x1) and time. It is still true
that a transverse cut must indicate force equilibrium, but the force trans-
mitted at the cut will not be equal to the force applied at the ends. In this case
we specify that the stress T,, is a function of space and time T11(x,, t) and use
(9.1.5) to calculate the surface traction applied to an element of material by
the adjacent material. Thus the surface tractions are represented in Fig.
9.1.1b, and the net force due to the surface tractions, correct to first-order
terms in Axl, is

iA Til x, + A_, ) - Tiix, - Ax, t = i TA11 Azx,. (9.1.6)
1l t2 )-- 711 2-T )]= iI a0xl

Note that the right side of (9.1.6) can be interpreted as the mechanical body
force density (aT,,/ax1) acting throughout the volume A Axl. The force
density aT11•ix 1 is a simple case of the general expression in (8.2.7). Here the
stress T1, has a mechanical origin.

One of the forces applied to the small element of the rod illustrated in Fig.
9.1.1b is the acceleration force. To find this force we need to describe the
instantaneous position of the element with respect to the inertial coordinate
system (x,). This is done conventionally by describing the displacement of
the element with respect to its position in static equilibrium and with no
applied forces. We illustrate it in Fig. 9.1.3. In Fig. 9.1.3a the rod is in static
equilibrium with no forces applied. Then the element of material labeled a
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Elastic rod

9-9

FI (a)

_ X 1x"+ 51(Xl)

(b)

Fig. 9.1.3 Definition of displacement: (a) unstressed rod in static equilibrium; (b) stressed
rod indicating definition of displacement 61.

has the position x,. In Fig. 9.1.3b we apply forces of magnitude fat the ends
of the rod, and it is stretched, thus moving the element a of material to the
point x, + 6,(x,). With time-varying forces the displacement 6, from equilib-
rium will be the function of both space and time, 6,(x,, t).

Referring back to the element of the rod in Fig. 9.1.1b, we can describe the
instantaneous displacement of the element as

61(x1 - 6,1 t),

that is, the equilibrium position of the matter that is instantaneously at

position x, is x, - 6,. We now make the assumption, to be justified in

Example 9.1.1, that the displacement 6, in an elastic material is usually small

enough that we can use small-signal, linear differential equations with
constant coefficients to describe the motion. Thus we expand the displacement
6, in a Taylor series about the value at x, and obtain

861(xx, t)
6(x 1 - 6,, t) = 6,(x,, t)- , (x,, t)0 + --. (9.1.7)

ax,

Usually, 6, and its space derivatives are small enough to allow us to neglect
all but the first term on the right of (9.1.7). Thus the acceleration of the
element centered at x, in Fig. 9.1.1b is

8 2
,1(x,, t)

at"

Because the local displacement of the material is small, the fractional
change in mass density will be small. Consequently, in the spirit of the
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linearized theory we assume that the mass density p of the rod is constant
and write the xz-component of Newton's second law for the element in Fig.
9.1.1b as

a26, aT11pA Ax, - = T A Ax 1 + F1A Ax,; (9.1.8)at2 ax1
that is, the inertial force is equal to the mechanical force on the element
from adjacent material plus any externally applied body forces. We divide
this expression by the volume A Ax1 of the element and obtain the desired
equation of force equilibrium:

a291 aBT,
pa - ax1 + F1 . (9.1.9)

Note that each term in this equation is a force density.
As the second step in finding the equations of motion for a thin elastic

rod we introduce the elastic property of the material to relate stress T,, and
displacement 6.. The form of this relation results from a mathematical
description of experimental results obtained for a wide variety of elastic
materials.

It is found experimentally that the elastic stress depends on how much the
material is deformed, the stress increasing as the deformation increases.
This is a statement for continuous media, analogous to the statement for
lumped-parameter systems, that for an ideal spring the force is dependent
on the relative displacement of the ends or on the deformation of the spring
(see Section 2.2.1a).

To calculate the local deformation in a thin elastic rod we consider two
grains of matter labeled a and b in Fig. 9.1.4. With no applied forces and
static equilibrium these grains of matter are at positions xz and x, + Ax1 ,
as indicated in Fig. 9.1.4a. When forces are acting on the rod, the two grains
of matter will have the positions indicated in Fig. 9.1.4b. Our objective is to
find a unique relationship between the stress T,, and the displacement 6,.
We expect that the change in the distance between the points a and b,

{[61(x + Ax1) + X) + Ax1] - [6x 1 ) + X11 - Ax,

will be proportional to the applied stress. This change, however, is also
proportional to the original distance Ax, between points a and b. To obtain
a measure of the elongation that is independent of Ax1 , we normalize the
change in length to the unstretched length and take the limit Ax -- 0. The
resulting function el, is called the normalstrain and is

= i[6(x 1 + Ax1) - 6B(x1)] 6,e, =- lim (9.1.10)AXI-*0 AX, axi
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a b

I I

I i

xl xl + Ax1

(a) I

a I b

xl xl + AXl

(b)

Fig. 9.1.4 Displacements of two adjacent particles: (a) unstretched; (b) stretched.

This geometrical relation is often called the strain-displacementrelation and
has its three-dimensional counterpart derived in Chapter 11.

We define an idealelastic material as one in which the stress Ti, is a function
only of the strain e,,. This is analogous to the definition of an ideal spring in
Section 2.2.1a. An ideal linear elastic material has a linear relation between
stress and strain conventionally written as

Tal = Ee,1. (9.1.11)

The constant of proportionality E is called Young's modulus or the modulus
of elasticityand (9.1.11) is often referred to as Hooke's law, or as the stress-
strain relation. Equation 9.1.11, which introduces the physical properties of
the material, is analogous to the constituent relations of electromagnetic
theory, as discussed in Section 6.3. The modulus of elasticity E, like E or o,
is found by laboratory measurements.

In our treatment we consider only ideal linear elastic media as described
by (9.1.11). It is well to remember that the linear model holds over a limited
range of strain and that some materials do not behave linearly.

We can now summarize the equations of motion that we use to describe
longitudinal motion in a thin rod of linear elastic material. Force equilibrium
is described by (9.1.9) and the stress-displacement equation is obtained by
using (9.1.10) in (9.1.11).

a 2
•61 OT +F

at2 ax1 +F, (9.1.9)

Til = E L• . (9.1.12)axl



Simple Elastic Continua

Table 9.1 Modulus of Elasticity E and Density p for Representative Materials*

E-units of p-units of v,-unitst of
Material 1011 N/m2 103 kglm 3 m/sec

Aluminum (pure and alloy) 0.68-0.79 2.66-2.89 5100
Brass (60-70% Cu, 40-30% Zn) 1.0-1.1 8.36-8.51 3500
Copper 1.17-1.24 8.95-8.98 3700
Iron, cast (2.7-3.6% C) 0.89-1.45 6.96-7.35 4000
Steel (carbon and low alloy) 1.93-2.20 7.73-7.87 5100
Stainless steel (18% Cr, 8%Ni) 1.93-2.06 7.65-7.93 5100
Titanium (pure and alloy) 1.06-1.14 4.52 4900
Glass 0.49-0.79 2.38-3.88 4500
Methyl methacrylate 0.024-0.034 1.16 1600
Polyethylene 1.38-3.8 x 10-3 0.915 530
Rubber 0.79-4.1 x 10- 5 0.99-1.245 46

* See S. H. Crandall, and N. C. Dahl, An Introductionto the MechanicsofSolids, McGraw-
Hill, New York, 1959, for a list of references for these constants and a list of these constants
in English units.
t Computed from average values of E and p.

The modulus of elasticity E and density p for common solids which can
have elastic behavior (for small deformations) are given in Table 9.1. The
equations of motion for a thin rod are summarized in Table 9.2 at the end of
the chapter. The magnitude of the displacement resulting from a moderate
applied stress is small, as illustrated in the following example.

Example 9.1.1. A metal rod is supported at one end by a rigid structure and subjected
to a forcef = 100 lb at the other end (Fig. 9.1.5). Using a rod made of aluminum (E =
0.7 x 10" N/m 2) in the dimensions shown, we wish to find the increase in length caused
by the forcef. The weight of the rod is small compared with f and can be neglected.

I fl100 b= 445 N

Fig. 9.1.5 Metal rod fixed at xz = 0 and subject to the forcef at xx = 1.
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The rod is static. Hence (9.1.9) and (9.1.12) yield, with F1 = 0,

d2b6
=0. (a)

with the solution
61 = Czl + D. (b)

Because 6(0) = 0, the constant D = 0. The remaining constant is found from the boundary
condition on the stress at x1 = 1; that is, the force equilibrium of a thin slice of the rod at
zx = I (see Fig. 9.1.5) requires that

ddyAT(1/) =f = AE (I), (c)

where A is the cross sectional area of the rod. Equations b and c show that C = f/AE and
that the displacement evaluated at xa = 1, where it has its largest value, is

61 f/ (445)(0.1) = 6.36 x 10-6 m, (d)
EA - (0.7 x 1011)(10 - 4)

or about 2.5 x 10- 4 in. Note that although this displacement is extremely small it can be
made arbitrarily large by increasing the length of the rod. It is the rate of change of the
displacement, or the stress, that must be small if the linear stress-strain relation is to remain
valid.*

9.1.1 Wave Propagation Without Dispersion

We consider a case in which the body force density F1 in (9.1.9) is zero.

Then (9.1.9) and (9.1.12) yieldt

B86 E 826t2  E 2 .  (9.1.13)
at" p aX2'

This is called the wave equation because it has solutions of the general form

6 = 6+(x - vt) + 6_(x + vt), (9.1.14)

where

v = ( , (9.1.15)

which can be verified by substituting (9.1.14) into (9.1.13). The function 6+
represents a wave traveling in the +x-direction and the function 6_ represents
a wave traveling in the -x-direction.

To an observer traveling with a velocity such that the phase (or argument)
of 6+ is constant the function 6+ will have a space variation that does not vary
with time. The required velocity is found by setting

x - vt = constant (9.1.16)

* A discussion of inelastic behavior is given in most texts on the mechanics of solids; for
example, G. Murphy, Mechanics of Materials, Ronald, New York, 1948, p. 23.
t In what follows the subscripts used in the preceding section are dropped. In the one-
dimensional problems to be considered the subscripts are not needed.

-r· · x~..



__

Simple Elastic Continua

and differentiating with respect to time to obtain

dx
S= v. (9.1.17)

dt

Thus the observer must be traveling in the positive x-direction at the phase
velocity v,. Note that the phase velocity is the same for all x and all t. This
justifies the interpretation of the function 6, as a wave traveling in the
positive x-direction.

Similar reasoning shows that an observer must travel in the negative
x-direction with speed v, to observe a constant spatial distribution of 6_

Phase velocities for rods made of representative elastic materials are given
in Table 9.1.

Because the waves 6+ and 6_ propagate with constant speed and do not
change their shape (or disperse) with time, they are referred to as non-
dispersive. For any given problem the functions 6+ and 6_ are determined by
initial conditions and boundary conditions. This is illustrated with simple
examples. In the process we introduce techniques that will prove useful in
later sections in which the wave propagation will not be so simple as in the
thin rod.*

9.1.1a Wave Propagation and Characteristics

We first consider the dynamics of a thin elastic rod of infinite length with
general initial conditions given by

a6
v(x, 0) =- (x, 0) = o(), (9.1.18)

a6

T(x, 0) = E N (x, 0) = To(x), (9.1.19)
ax

* The reader may be familiar with waves in transmission lines, which are fully analogous
to those considered here. To see this, note that (9.1.9) and (9.1.12) can be written (with
F, = %0as

av aT aT av
P -E-Ft = • ; at ax'

which are to be compared with the equations

al aV av 1 aiL-at ax ' at C ax'

where I and V are the transmission line voltage and current and L and C are the inductance
and capacitance per unit length. A discussion of wave transients on transmission lines is
given in R. B. Adler, L. J. Chu, and R. M. Fano, ElectromagneticEnergy Transmissionand
Radiation, Wiley, New York, 1960, p. 127.
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where v is the local velocity aslat. Note that the two independent initial
conditions necessary for the solution of the second-order differential equation
(9.1.13) are specified as two independent derivatives of 6. The initial condi-
tions can be specified in other ways.

In what follows we find it convenient to replace the two independent
variables x and t by two new independent variables a and # defined by

C = x - vt, (9.1.20)

p = x + vt. (9.1.21)

Thus we write (9.1.14) as
s = 6+(c) + 6_(f), (9.1.22)

and we use the definition ofvelocity v as as/at and (9.1.12) to write the velocity
and stress in terms of 6, and 6_ as

[dS& d6j
v(x, t) = -V, =d dpi' (9.1.23)

d6 d6
T(x,t)= E + (9.1.24)

[ýdoc dI

It is useful to view the behavior on an x-t plane, as illustrated in Fig. 9.1.6.
Formally, we wish to find the values of v and T at any point (x, t) for t > 0,
given the values of v and Tat t = 0 (along the x-axis in Fig. 9.1.6). To achieve

Fig. 9.1.6 The characteristic lines (9.1.20) and (9.1.21) in the x-t plane showing the C+
and C- characteristics that intersect at the point (x, t).
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this we solve (9.1.23) and (9.1.24) to obtain

d () T( t) _ v(x t)= (9.1.25)
doc 2 E v,
d6 1FT(x, t) v(x, t)]

() = + - . (9.1.26)
d3 2L E v,

The left side of (9.1.25) is a function of a alone; consequently, for a particular
value of cc, d6 /dcc is constant. We find the value of the constant by recogniz-
ing that at t = 0, x = c (9.1.20), and the constant value of (9.1.25) is deter-
mined by using the initial conditions of (9.1.18) and (9.1.19) thus:

d6_+(T) = [T ) (9.1.27)
do 2 _ E v ,

In a similar manner we note that the left side of (9.1.26) is a function of P
alone. For any value of / we determine ds_/df by noting that at t = 0,
x = f (9.1.21) and using the initial conditions of (9.1.18) and (9.1.19) to
obtain

d- -13 ) () co(!)
d() L 0+ =v2•. 1 (9.1.28)

The value of T (or v) can now be found at any point (x, t) in the plane of
Fig. 9.1.6 by using the facts that d&_/doc is constant along a path of constant
c and d6_/d/ is constant along a path of constant fl. As indicated by (9.1.20)
and (9.1.21), a = constant and f3 = constant are straight lines in the x-t-
plane. All lines of constant cc are parallel with a positive slope of v, and the
line for c = 0 passes through the origin as indicated. All lines of constant f3
are parallel with a slope -v, and the / = 0 line passes through the origin.

The lines c = constant and /3 = constant in the x-t plane are called
characteristics.* Because cc is the argument of 6+, we refer to the family of
lines c = constant as the C+ characteristics. Similarly, the family of lines
representing P = constant are called the C characteristics.

A particular point (x, t) is the intersection of one C+ and one C- char-
acteristic, as illustrated in Fig. 9.1.6. The particular values of cc and P/ are
given by (9.1.20) and (9.1.21) for the values of x and t at the point in question.
Hence we can find the value of T or v at any point in the x-t plane by using
these values of a and fl in (9.1.27) and (9.1.28) and those results in (9.1.23)
and (9.1.24) to find the stress T(x, t) and the velocity v(x, t); for example,
the stress is found to be

T(x, t) = [ET,(x - v,t) _ v,(x - v,t) + T,,(x + v,t) v,,(x + v,t)
2 E v, E v,

(9.1.29)
* R. Courant and K. O. Friedricks, Supersonic Flow and Shock Waves, Interscience, New
York, 1948, Chapter II.

I 



Longitudinal Motion of a Thin Rod

Physically we have found that the instantaneous value of the stress T
(or velocity v) at the point (x, t) is determined by the initial (t = 0) values of
stress and velocity at the positions x = a and x = Pfalong the rod. The
initial conditions at x = a propagate (along the C+ characteristic) in the
positive x-direction with the velocity v, and reach the point x under observa-
tion at the time t at which the measurement is to be made. Similarly, initial
conditions at x = #fpropagate (along the C- characteristic) in the negative
x-direction with velocity v, and reach the point x at time t. Thus the values of
T and v at (x, t) depend on the initial conditions at only two points. This is a
property of nondispersive waves.

Before we consider a particular example we make one further observation.
There is no mathematical reason why we could not find a solution to (9.1.13)
for points to the left of the x-axis in Fig. 9.1.6. We could make an argument
similar to the one just given to find the values of d+f/dcc and d_/dfl at a point
(x, t < 0) by following the characteristics from the x-axis to the point in
question. In doing so, however, we would have assumed that the data at
t = 0 can determine the dynamics before t = 0; that is, we would have made
the present depend on the future. Implicit to our solution is the assumption,
based on independent physical reasoning, that in terms of time the cause
must come before the effect. When this physical reasoning is used to discrim-
inate between solutions, we invoke the condition of causality.* We shall find
it necessary to make further use of this condition to provide physically
meaningful initial conditions and boundary conditions.

Example 9.1.2. As a special case, we consider the motions of the thin rod shown in
Fig. 9.1.7. External forces are applied at the cross sections x = a and x = -a to produce
an initial stress T, over the length -a < z < a. With the rod in a static condition (v = 0),
these forces are removed to give the initial stress distribution shown in Fig. 9.1.8. In this
figure the x-t plane forms the "floor" of a three-dimensional plot, where the stress T
provides the vertical axis. Hence at t = 0 the stress distribution is uniform along the
x-axis between the points x = ±a and zero elsewhere. Because the initial conditions and

ATm/2 ATm/2 Cross section A

ATm/2 I ATJ2

x=-a X=O x=a

Fig. 9.1.7 Thin rod subject to an initial uniform static stress T,, over the section -a <
x < a. At t = 0 the external forces AT,/2 are removed.

* See, for example, P. M. Morse and H. Feshbach, Methods of TheoreticalPhysics,
McGraw-Hill, New York, 1953, p. 834.
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Fig. 9.1.8 Stress distribution T as a function of x at succeeding instants in time. When
t = 0, the stress is uniform between x = a and x = -a and zero elsewhere; the velocity is
zero.

the characteristics are symmetrical about the t-axis, we confine our attention to the half
of the x-t plane in which x > 0.

The C+ and C- characteristics intersecting the x-axis at x = ±a are shown plotted in
the x-t plane. We see that these particular characteristics divide the x > 0 half of the x-t
plane into three types of regions, labeled 1, II, and III in Fig. 9.1.8. These regions have
the following properties:

I The characteristics that cross at the point (x, t) originate on the x-axis, where T = 0
(x > a, x < -a). There are two of these regions.

II The characteristics that cross at the point (x, t) originate on the x-axis, where
T= T, (-a< x < a).

III Of the characteristics that cross at the point (x, t), C+ originates when t = 0 where
T = Tm (-a < x < a), and C- originates where T = 0 (x > a).

From (9.1.27) and (9.1.28) it follows that in

Region I
d5 d6+- 0, d-_ =0.
dcc dfl

Region II
d6+ _ Tm d6 _ Tm
dZ 2E ' dfl 2E
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Region III
" 

= 

0.

doc 2E dT#

The stress distribution now follows from (9.1.24), and this is plotted at succeeding instants
of time in Fig. 9.1.8. The edge of the initial stress distribution at x = a propagates along the
C+ and C- characteristics originating at x = a, and similarly the edge at x = -a propagates
along the C+ and C- characteristics originating at x = -a. In Region I the front edge of
the forward traveling wave has not had time to arrive from x = a, hence the stress is still
zero. In Region II the backward traveling wave from x = a and the forward traveling wave
from x = -a have not had time to arrive and the stress is still Tm. In Region III, however,
the forward wave has arrived from x = a but the backward wave from x = -a has not yet
arrived. For time t > a/v, the waves are two separate pulses propagating with the velocity
v, in the +x and -x directions, respectively.

We have followed the development of the waves graphically to encourage a physical
understanding of the relationship between the characteristics and the wave propagation.
If we required an analytical result only, (9.1.29) could be used with the initial conditions

To(x ) = Tm[uL(x + a) - u_l(x - a)],

v0 (X)= 0,

where u_i(x + a) is a unit step function defined as

1 for x > -a,

0 for x < -a,
to obtain the result

T= L[u_(x - vt + a) - ( - vt - a) + u_l +(v,t + a) - U 1 + v,t - a)].

This expression is the same as that found with our graphical solution. When the initial
conditions are given as complicated analytical functions of x, the analytical approach is
more convenient than the graphical approach.

Attention has so far been confined to the dynamics near the center of a
very long rod. In an actual rod the waves shown in Fig. 9.1.8 will eventually
encounter ends or boundaries. The resulting dynamics are the subject of the
next subsection.

9.1.1b Wave Reflection at a Boundary

Constraints imposed on the ends of the rod enter the mathematical
description as boundary conditions; for example, an end may be free,
as shown in Fig. 9.1.9a, in which case force equilibrium (for a thin slice of
the material at the very end) requires that the instantaneous stress be zero.

More obviously, if the end is fixed (Fig. 9.1.9b), the velocity must always be

zero. In general, the ends can be attached to springs, masses, and dampers,

or, as we shall see in Section 9.1.2, they can be excited by electromechanical
transducers which act essentially as dependent machanical sources.
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Free end
AT (1,t)

x=l
(a)

Fixed end

x=I
(b)

AT(1, t)

1 B(l,t)
(c)

Fig. 9.1.9 Simple boundary conditions on the end of a thin rod: (a) free end; (b) fixed
end; (c)end attached to a damper producing a total force By.

Force equilibrium on the end of an elastic rod attached to a linear damper,
as illustrated in Fig. 9.1.9c, yields a boundary condition of the form

v(1, t) + CT(I, t) = 0, (9.1.30)

where C is a constant (C = A/B in Fig. 9.1.9c). This expression can also be
used in its limiting forms to represent fixed and free end conditions; for
example, if C = 0 (an infinitely stiff damper), we have the fixed end condition
(v = 0) in Fig. 9.1.9b, whereas if C - oo (limit of zero damping constant B)
the free end condition (T = 0) in Fig. 9.1.9a results. A boundary condition
of the form of (9.1.30) is used to illustrate the influence ofboundary conditions
on the dynamic behavior of a thin elastic rod.

We indicated in (9.1.14) that the motion in the rod is specified at any point
by two waves, 6, propagating in the +x-direction and 6_ which propagates
in the -x-direction. We further pointed out that the functions 6, and 6_
are determined by initial and boundary conditions. A wave that encounters a
boundary is reflected; thus a forward wave 6+ becomes a backward wave 6
at a boundary. The relation between the incident and reflected waves depends
on the boundary condition, as expressed by (9.1.30).

In Section 9.1.1a we learned that the 6+ and 6_ waves propagate with
constant amplitude along the C+ and C- characteristics. Hence a point in the
x-t plane, such as A, shown in Fig. 9.1.10, is unaffected by the boundaries
because it is the intersection of characteristics that do not originate on the
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(a) (b)

Fig. 9.1.10 (a) Thin rod of length 21 centered at x = 0; (b)an x-t plot showing the char-
acteristics relevant to the effect of the ends on the dynamics.

boundaries. At points such as B, however, outside the cone formed by the C-
characteristic f = I and the C+characteristic a = -1, one or both of the
intersecting characteristics C+and C- originates on a boundary; for example,
the values of T and v at the point B shown in Fig. 9.1.10 are determined by a
C+ characteristic originating on the initial conditions at t = 0 and a C-
characteristic originating on the boundary at x = i. Hence we must use the
boundary condition to determine the value of (d6_/df)(Pl) along the C-
characteristic. To do this we set x = 1 and substitute (9.1.23) and (9.1.24)
into (9.1.30) and solve for d_/dfl:

db( d C -CE- (9.1.31)
d dt 'CE + v,2

In this equation d6,ldot is the value for the incident wave and thus is deter-
mined for this problem by the initial condition at t = 0, x = o. As indicated
by (9.1.31), the boundary condition and the incident wave determine com-
pletely the value of the reflected wave that propagates along the C- char-
acteristic. Analogous arguments can be made at the boundary x = -1,
where the 6_ wave reflects as a 6+ wave.

C- .. A ýf -
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When a wave encounters more than one boundary before it reaches the
point of interest in the x-t plane, the boundary conditions must be applied
at each reflection to find the properties of the wave at the point in question.

Example 9.1.3. As an example of the reflection of waves from the boundaries, we
continue with Example 9.1.2, introduced in Section 9.1.1a. We found there that the initial
distribution of stress near the center of the rod resolved itself into waves that propagated
in the +x and -x-directions. When the rod is terminated in free ends, as shown in Fig.
9.1.10, these waves will be subject to boundary condition (9.1.30) in which C- 00 at
x = -:-1.

T(I, t) = 0, (a)

T(-1, t)= O. (b)

The use of either of these boundary conditions with (9.1.24) indicates that at a free boundary

d6+_ d

dc. dfl' (c)

that is, the reflected stress wave must be equal in magnitude but opposite in sigh to the
incident wave to maintain the zero-stress boundary condition.

We use the condition of (c) with (9.1.24) to construct the solutions shown in Fig. 9.1.11.
When we describe the two stress waves as T+ and T , we find that a T+ wave originating
at point C at which T = Tm and T+ = T = Tm/ 2 is reflected at the boundary x = 1 at
point D as a negative traveling wave T_ = -Tm/ 2. Hence just after t = (1 - a)/v, the
leading edge of the T, wave is canceled by the reflected T wave.

It is clear from (9.1.31) that if CE - v, = 0 no wave will be reflected by
the boundary. With (9.1.15), this condition becomes

1

C - (9.1.32)
SpE

Fig. 9.1.11 Propagation of an initial pulse of stress on a rod terminated at x = ±1 in
free ends.
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and the boundary condition 9.1.30 is

1
v(1, t) + T(1, t) = 0. (9.1.33)

One way in which this boundary condition can be obtained is shown in
Fig. 9.1.9c, in which the rod is terminated in a viscous damper with a constant
B. Force equilibrium for the end of the rod is the same as condition (9.1.33) if

B = A /pE; (9.1.34)

that is, if the viscous damper has this coefficient, an incident wave will not
be reflected*

Example 9.1.4. We can illustrate the significance of the boundary condition given by
(9.1.33) by considering the dynamics that result if the end of a static rod is given the exci-
tation T(0, t) = To(t), as shown in Fig. 9.1.12. Because all the C- characteristics either
originate on the x-axis (at a time when there isno motion and no stress in the rod) or on the
boundary at x = i, where no reflected waves can arise because of the boundary condition,
we conclude that dd_Pdf is zero everywhere in the portion of the x-t plane pertinent to the
problem (Fig. 9.1.12). We can evaluate d6+/daat x = 0 from the excitation condition and
(9.1.24); that is, the C+ characteristic originating at t = t' is given by [see (9.1.20)] a =
-vt', hence we can write

dd+ To(t)
7o- Lvt E

Fig. 9.1.12 Excitation To(t) at one end of a thin rod transmitted to a matched end at

* In the terminology of transmission line theory we say that the termination is "matched"
to the rod or that the rod is terminated in its "characteristic impedance." See R. B. Adler,
L. J. Chu, and R. M. Fano, ElectromagneticEnergy Transmission and Radiation, Wiley,
New York, 1960, pp. 88-90.

9.1.1
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It follows that along the characteristic

0 = -vt' = x- vUt (b)
we have

T(, t) = To(t'). (c)

Equation b relates t' to t and allows us to write (c) as

T(x, t) = T t-- . (d)

In particular, at the end of the rod where x = 1,

T(, t) = T t - . (e)

As we expected, we have found that a signal To(t), introduced on the rod at the end where
z = 0, appears at the opposite end delayed by the time I/v,, or the time required for the
signal (d) to travel the length of the rod. With the boundary condition of (9.1.33), a pulse
introduced at one end will travel the length of the rod and leave no after effects in the form
of reflections.

Wave propagation on a thin rod with a boundary condition in the form
of (9.1.33) will play a basic role in the electromechanical delay line described
in Section 9.1.2.

9.1.2 Electromechanical Coupling at Terminal Pairs

One of the most important ways in which coupling occurs between electric
or magnetic fields and continuous media is through the boundary conditions.
In the one-dimensional motions considered in this section the boundaries
can be described in terms of the displacement (or velocity) and the stress
evaluated at a fixed point in space (x). Because these boundary variables are
only functions of time, they form a mechanical terminal pair; for example,
if the end of the rod is at x = 0, the terminal pair of Fig. 9.1.13b can be used
to describe the boundary condition applied to the thin rod in Fig. 9.1.13a.

Lumped-parameter electromechanical devices are often coupled to
mechanical terminal pairs formed from boundary variables in much the
same way as discussed in Chapters 2 and 5. As an example, Fig. 9.1.13a
shows a plunger attached to the end of the rod (at x = 0, say). This plunger is
subject to a force of electrical origin, as shown, and has the position y(t).
Other forces acting on the plunger are the forces AT(O, t) from the attached
rod and an inertial force. Within an arbitrarily defined constant, the dis-
placement at the end of the rod is y or y(t) = 6(0, t).

Figure 9.1.13b formalizes the mechanical terminal pair. We write the
force equilibrium equation as

d26(O, t)M d t AT(O, t) + fe. (9.1.35)
dt2
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Fig. 9.1.13 Electromechanical coupling at the end of a thin rod: (a) physical system;
end of rod attached to mass M acted on by the force of electric origin fe; (b) formal
representation.

Note that, in general, f' will involve the displacement 6(0, t) and electrical
variables such as currents. The force equation (9.1.35) is the boundary condi-
tion presented by the coupling network to the distributed mechanical system.
Its significance is demonstrated in the following example.

Example 9.1.5. Transmission systems that support nearly nondispersive waves are
required to transmit a signal with a minimum of distortion. As we have pointed out,
electromagnetic transmission lines have much the same dynamical behavior as the elastic
rod that is the subject of this section. Because it takes a finite time for waves to propagate
from one end of these systems to the other, a common application is to the production of
time delays.

Acoustic waves propagate with velocities that are on the order of4000 m/sec, as shown for
various materials in Table 9.1. By contrast, electromagnetic waves propagate with velocities
on the order of the speed of light in free space (3 x 108 m/sec). Hence the mechanical waves
are useful in producing long time delays* (on the order of 10-3 sec). If, however, an
electrical signal is required, it is necessary to use electromechanical coupling at the input
and output of the mechanical structure. One system is shown in Fig. 9.1.14a. The input
signal is the current ii(t) applied to the terminals of the transducer to the left. By proper
design this current produces an electrical force on the left end of the elastic rod that is
essentially proportional to the current ii . This force is transmitted in the form of a stress
wave to the right end of the rod, where it produces motion of the magnetic plunger in the
output transducer hence an induced voltage v,(t). The conductance G and inductance L
of the terminal pair (i2, A2) are adjusted to absorb the transmitted wave without producing
a reflected wave traveling in the -x-direction. In this way the system is designed so that
vo, is proportional to i,(t) delayed by I/v, sec.

* See, for example, W. P. Mason, ed., PhysicalAcoustics, Academic, New York, 1964,
Vol. 1, Part A, Chapters 6 and 7.

9.1.2
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Fig. 9.1.14 (a)Electromechanical delay line designed to give an output signal vo(t) which
is proportional to ii(t) delayed by l/v, sec; (b) circuit representation of (a).

We begin by finding the forcefie of electrical origin on the plunger of the input transducer.
This is a simple application of the ideas introduced in Chapters 2 and 3*. The magnetic
field intensity in the gap of the magnetic circuit is assumed to be uniform so that in the gap

NilH-.
d

Hence the flux density through the plunger is B1 and through the air gap, B2, where

ttoNi,
B2 =

The terminals (i/, A1)link the total flux through the gap N times and we can write

,1= N[(a - 62)DB 1 + (a + 6i)DB2],
where

6i = 6(0, t).

* Essential equations summarized in Tables 2.1 and 3.1, Appendix E.

Uý-.D ý+
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We substitute (a) and (b) into (c) and arrange the result in the form

where
N 2Da(p - po) (e)

L, = d

The transducer is electrically linear; hence*(P + pO -o
W'= IL 2 (f)(-Po a

andt
8W', Loi2

86, 2a
Now, we want this force to be proportional to the driving current ii, and this is the purpose
of the biasing current L From the circuit in Fig. 9.1.14 we write

(il)2 = (I + i,)
2 _ 12 + 2Ii,,  (h)

where we are assuming that the bias current I is large enough to justify dropping the term
ii2. In practice, the bias field produced by I may be obtained from a permanent magnet
placed in the magnetic circuit. The equivalence of the current excitation and the permanent
magnet is discussed in Section 2.1.1.

We are now able to write the force equation for the plunger, which we recognize as
(9.1.35) with 6 = 6i. A further approximation, justified by our design requirements, is
made at this point. If we wish to make the stress T(O, t) in (9.1.35) proportional to the
applied force (hence to the input current), we must design the system with the mass M
small enough to make the inertia force negligible under the desired operating conditions.
This approximation becomes less accurate as the frequency is raised. The inertia force is a
factor to be considered if the fidelity of the delay line is to be explored in detail.

With the assumption of negligible inertia force, (9.1.35) becomes

AT(O, t) - LO (12 + 2i) = 0, (i)

where we have used (g) and (h) to write the forcefe. From this expression it is clear that the
stress T(O, t) will have a constant part due to the bias current I and a time-varying part due
to the signal current ii.Thus we write

T(O, t)= T, + T'(0, t), (j)
where

T, (k)
2aA

T'(0, t) = ii(t). (1)aA

The output transducer is identical to the input transducer and has the same bias current L
Consequently, under equilibrium conditions the output transducer applies a force AT, to
the end of the rod at x = I equal in magnitude and opposite in direction to the force applied

* Equation k, Table 3.1, Appendix E.
f Equation g, Table 3.1, Appendix E.

_···__lly__ll·_l___l·-·.-
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at x = 0 by the input transducer. The result of this equilibrium stress T, is a slight elongation
of the rod, very much as described in Example 9.1.1. Our equations of motion are linear;
thus we can superimpose the displacements due to T s and T'. Because we are interested only
in the response to T', we ignore the equilibrium elongation due to T.* and assume that
displacements 6• and 6o are the increments of displacement due to the driving signal
T'(0, t).

As stated at the outset, we wish to have no reflected waves at x = I; consequently, we
must make (9.1.33) the boundary condition at x = I. We now specify the properties of the
output transducer that are necessary to achieve this end. Because

v(1,t)= d-
dt

the desired form of the boundary condition is

ddo 1
+ T(, t) = 0. (m)

We write the equation of motion for the plunger of the output transducer

d 2 6
M ,~Oe - AT(I, t). (n)

The inertia force must be negligible under the desired operating conditions to achieve the
boundary condition of (m). For this case (n) reduces to

foe - AT(1, t) = 0. (o)

Next, we recognize that the two transducers are identical except for the definition of the
plunger displacement. Thus we obtain the properties of the output transducer from (d) to
(g) by replacing 6i with -- o and iI with i2. The forcefoe is

fe Loi2
2

fo" = 
(p)

We write

iz(t) = I + i'(t), (q)

with ji'(t)j < L.Then, dropping equilibrium terms from (o), we can write the incremental
(time-varying) boundary condition as

Lo-i' - AT'(1, t) = 0. (r)
a

From Fig. 9.1.14 we recognize that the current i' is that flowing through the conductance
G and is therefore given by

i' - G (s)
dt

y analogy with AZ(d), 22 is

L L+,Lo doL

*Care must be exercised in generalizing this assumption; for example, if the force f e is
dependent on 6i (as it is not in this example) and the rod is very long, the equilibrium
displacement can affect the behavior markedly. In any such case, however, a correct
analysis can be obtained by exercising care in linearizing the forcef e in terms of equilibrium
and perturbation variables.
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and (s) can be written, correct to linear terms in time-varying quantities, as

i = -G[Lo ' "+ . (t)
Ju - JUOdt

It is clear from (m)and (r) that the current i' must be proportional to d6/,ldt if (m)is to be
satisfied. Consequently, the output transducer must be operated in a regime such that

LoI d o I +/ o) di'
a dt - Mdt

Assuming that this condition is satisfied, (t) becomes

i' GL=Id6, (u)
a dt

and (m)and (r) become identical when

Aa 2 1
(v)GLo21 2 V-" (v)

GL022 I lpE

With the parameters thus adjusted, the conductance G absorbs the incident wave in the same
way that the mechanical damper absorbed the incident wave in Section 9.1.16.

With the driving stress T'(O, t)given by (1)and with no reflected waves at x = 1,the stress
T'(1, t) is

T'(1,t)= a t-- (w)
aA ;)

where we have used the relation T'(i,t) = T'(O, t - liv,) as shown in Example 9.1.4. The
use of this result in r yields

i'(t)iit-- (x)

and the output voltage is
i'(t) ii(t - 1/v)

G G

Thus, with identical transducers and no reflected waves at z = 1,the current i' is simply the
driving current delayed by a time interval 1/v, and the output voltage v,(t) is a delayed
replica of the input current i4(t).

In a practical device that uses wave propagation in an elastic material to obtain a time
delay both electrical and mechanical damping are normally needed to obtain a matched
condition and no reflections. Also, most practical electromechanical delay lines use
magnetostrictive or piezoelectric transducers rather than the simple ones of our example.

9.1.3 Quasi-statics of Elastic Media

In the example of Fig. 9.1.14 the ends of the elastic rod are attached to
plungers. In the analysis of Example 9.1.5 it is assumed that the plungers can
be modeled as rigid masses but that the rod is deformable. Presumably, both
the rod and the plungers are constructed of materials that exhibit elastic
properties; consequently, the assumption is justified when signal transmission
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(elastic wave propagation) through the plungers requires a time that is short
compared with the time of transmission through the rod. In an intuitive way
we recognize this as the condition that the plungers must be made of "stiffer"
material than the rod; or, if both plungers and rod are made of the same
material, the rod must be much longer than the plungers.

In this section we use the thin rod to illustrate the criteria that must be met
in order to use lumped parameter models (see Section 2.2) for bodies made
of elastic materials. The justification for lumped-parameter mechanical
models is similar to the justification for using lumped-parameter electric
circuit models. Hence our arguments in this section are similar to those
presented in Section B.2.2.

Equations 9.1.9 and 9.1.12 are the equations of motion for the rod,
which we write here in terms of the velocity v(x, t) = a6/at (with the body
force density F1 = 0):

aT av
a -- p (9.1.36)
ax at'

ao 1 aT (9.1.37)
ax E at

If we have truly static solutions (a better name is time-independent solutions),
we set the time derivatives equal to zero in (9.1.36) and (9.1.37) and obtain

aT - 0, (9.1.38)
ax

= 0. (9.1.39)
ax

Thus for static or steady systems the velocity v and stress T are independent
of space x and time t, the values of v and T being determined by the boundary
conditions.

The essence of a quasi-static analysis is the assumption that the static
solutions are still valid with a time-varying excitation. The steady solutions
are then used with the time derivatives on the right of (9.1.36) and (9.1.37)
to calculate correction terms for T and v or to evaluate the accuracy of the
approximation.

The quasi-static behavior of the thin rod is highly dependent on con-
straints imposed by boundary conditions. Two limiting cases (boundary
conditions required by a fixed or a free end) result in systems in which the
static solution for v or T is zero. In these cases single lumped-parameter
elements can be used to represent the rod dynamics.

There is a complete analogy between the quasi-static behavior of the thin
rod and the electromagnetic quasi-statics of plane-parallel electrodes driven
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at one end and terminated in either an open circuit or a short circuit at the
other. These electromagnetic problems are discussed in Appendix B (Section
B.2.2), in which they are used to show the relationship between the quasi-
static magnetic and electric field systems.

9.1.3a The Spring

Figure 9.1.15a shows a thin rod of cross-sectional area A, modulus of
elasticity E, mass density p, and unstretched length I attached to a fixed
support at x = 0 and driven by a force f(t) at x = 1. It is clear that for a
static system (f = constant) the velocity v is zero and the stress T is uniform
and given by

T(x) - (9.1.40)

We now assume that this solution is still valid when the force is time varying;
thus

T(x, t) (9.1.41)
A

To calculate the velocity v that results from this time-varying force we
must use (9.1.41) in (9.1.37) to obtain

ao 1 df (9.1.42)
ax EA dt

(0, t) = 0

(a) IA f=AT(lt)

i'. 6(,t)
xO x-•

(b)

(c) fa f f=Ky

Fig. 9.1.15 (a) Thin elastic rod fixed at x = 0 and driven by f(t) at x = I showing (b)
the quasi-static distribution of stress and displacement along the rod and (c) the equivalent
lumped-parameter element.

9.1.3
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Integration of this expression with respect to x and use of the boundary
condition

v=O at x=0
yields

x dfv -x . (9.1.43)
EA dt

We integrate this expression with respect to time and recognize that with
f = 0, 6 = 0 to obtain

b(x, t) = f(t). (9.1.44)
EA

Thus, when we make the quasi-static approximation, the stress T and dis-
placement 6 are distributed along the rod, as illustrated in Fig. 9.1.15b.

We set
y(t) = 6(1, t)

and write (9.1.44) as

Y = f, (9.1.45)
K

where
EAK=-.

This is the terminal relation of the spring illustrated in Fig. 9.1.15c. Thus we
conclude that in the quasi-static approximation an elastic rod with a fixed
end appears to a driving force at the other end as a massless spring.

It is worthwhile to explore the limitations on this ideal lumped-parameter
model by evaluating correction terms that result from variations in stress
caused by the time-varying velocity (9.1.36). This process is analogous to the
evaluation of correction terms in the examples of Section B.2.2. We define
the correction term for the stress as T'(x, t) and write (9.1.36), using (9.1.43),

aT' Pz d~faT' px dtf (9.1.46)
ax EA dt2

We integrate with respect to x and use the boundary condition that T' = 0
at x = 1 because the static solution for T accounts for the applied force.
The result is

T' = P (x 2 - 12)d (9.1.47)
2EA dt2"

This correction term has a maximum magnitude at x = 0. Using this maxi-
mum value, we conclude that the quasi-static solution is valid, provided that

T'I p12 jd2f/dt2I
T - 2E < 1. (9.1.48)
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We can interpret this result more effectively if we assume that

f = F0 cos ot.
Then (9.1.48) becomes

1 2-=: 1, (9.1.49)
T2v,

where the phase velocity v, = Elp. The wavelength of a longitudinal
elastic wave of frequency c and phase velocity v, is

2-v,

Thus we write (9.1.49) as

- 21 - << 1 (9.1.50)2 v,2 A

and conclude that the quasi-static approximation is valid, provided that the
length of the rod is much shorter than an elastic wavelength at the frequency
of interest. The condition of (9.1.48) can also be interpreted for transient
systems by saying that the time of transmission of an elastic wave over the
rod length I must be short compared with the shortest characteristic time of
the driving force if the quasi-static approximation is to be valid.

9.1.3b The Mass

When the elastic rod is not fixed at x = 0, as it was in Fig. 9.1.15, but has
a free end at x = 0 as shown in Fig. 9.1.16a, the quasi-static model is a

a [ - f(t)=AT(l,t)

3.Xoao(t)
0

v(x, t)

.bt - T(xt)
o 1

f= dy

f=M d..

Fig. 9.1.16 (a) Thin elastic rod with free end at z = 0 and with end at x = 1driven by
v,(t); (b) quasi-static distribution of stress and velocity; (c) equivalent lumped element.

(C)

9.1.3
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rigid mass. This can be shown by specifying that at x = I the rod is driven by
a velocity source

v(l, t) = v(t) (9.1.51)

For a steady solution with vo = constant, the stress Tis zero and the velocity
is constant along the rod

v(x) = Vo (9.1.52)

In a manner analogous to that of the preceding section, we now assume that
vo is time-varying but that (9.1.51) still describes the velocity distribution in
the rod

v(x, t) = vo(t). (9.1.53)

We now use this velocity in (9.1.36) to write

aT dvo
a- p , (9.1.54)ax dt

which determines the stress. Integration of this expression and use of the
free end condition (T = 0 at x = 0) yields

dvo
T(x, t) = px- (9.1.55)

dt

The resulting quasi-static stress and velocity distributions are shown in
Fig. 9.1.16b.

Evaluation of the total force supplied by the velocity source yields

f(t) = M dv--, (9.1.56)
dt

where M = plA is the total mass of the rod. This is the equation of motion
for an ideal rigid mass for which the lumped element is given in Fig. 9.1.16c.

We could use (9.1.37) to evaluate a correction term in velocity and find
the limit of accuracy of the quasi-static model. The process, however, is the
same as that illustrated in the preceding section and the result, for an excita-
tion frequency o, is that given by (9.1.50). Thus we conclude that to model an
elastic rod as a rigid mass the characteristic time of the motion must be long
compared with the time taken for an elastic wave to travel from one end of
the rod to the other.

Note that, because elastic waves propagate much less rapidly than electro-
magnetic waves, lumped-parameter mechanical models are likely to be
inadequate at frequencies at which lumped electrical elements are an excellent
approximation.

I
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9.2 TRANSVERSE MOTIONS OF WIRES AND MEMBRANES

Among the most common structures used in connection with electro
mechanical systems are those that can be modeled as thin sheets or wires of
elastic material subject to a large equilibrium tension. Acoustic devices are
often characterized by lumped-parameter transducers coupled to wires or
membranes (diaphrams). Current-carrying conductors under tension (and
especially in the presence of large external magnetic fields) present continuum
electromechanical problems that assume practical significance. These models
also provide attractive vehicles for demonstrating many basic concepts,
techniques, and phenomena of continuum electromechanics which have
found application in more sophisticated configurations than are appropriate
in our treatment. These applications are pointed out in the development.

The system to be considered is shown for equilibrium conditions in Fig.
9.2.1. The elastic sheet or membrane lies in the x-y plane (z = 0) and is
assumed to be very thin in the z-direction*. It is stressed by a constant tension
S (newtons per meter) applied along all four edges in the x-y plane. Thus the
total force applied in the y-direction at the right-hand edge of the membrane is
S li.x. The membrane has a surface mass density Gm (kilograms per square
meter).

We now wish to constrain the membrane of Fig. 9.2.1 in arbitrary ways
along the edges, apply an arbitrary transverse force per unit area T., and
describe the resulting motion. We assume that this transverse motion is small
enough in amplitude that we can use a linear mathematical model. For such

z
Elastic membrane of mass

density 0'", kg/m2

.,{ Ay ,,/

Fig.9.1.1 A plane-elastic membrane in equilibrium subject to a tension S N/m along its
edges.

*The mathematical model to be developed also describes accurately the motion of a thin
sheet of fluid (bubble) whose dynamics are affected strongly by surface tension.
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a case we find that the motion is independent of the elastic properties of the
membrane but depends on the equilibrium tension S.

When the membrane is subjected to transverse (z-directed) excitations, it
will undergo transverse motion. This motion is described by the transverse
displacement e(x, y, t) from equilibrium (z = 0). Thus to write the equation
of motion we consider a rectangular section of membrane, with sides Ax
and Ay and whose center is at position (x, y), as illustrated in Fig. 9.2.2.
We write the z-component of Newton's second law for this section and take
the limit as Ax and Ay go to zero.

As stated earlier, the mathematical model is linear; consequently, we
assume that the transverse displacement and its derivatives are small enough
to justify the following assumptions:

1. The tension S is locally parallel to the surface of the membrane and
constant in magnitude, independent of deformation.

2. The surface mass density a,. is constant, independent of deformation.

With these assumptions we refer to Fig. 9.2.2 and write the z-component of
Newton's second law as

Az Ay E- S Ax U X,y + , t x, y , t
at, [y 2 ay 2

+ SAy -x+ ,yt Ax, t) + TZAxAy.
ax 2 ax 2 '

(9.2.1)

z

Fig. 9.2.2 Section of membrane having area (Ax Ay) and subject to the uniform tension S.
The displacement at the center of the section (x, y) is ý(x, y, t).

x+
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Division of this equation by the element of area Ax Ay and taking the limit
as Ax - 0 and Ay -* 0 yield the desired result:

a2 5 + + T . (9.2.2)

Note that we have used essentially the same steps in deriving the equation
of motion for the membrane as we used in Section 9.1 for the thin rod.

We recognize that the membrane can be excited by discrete terminal pairs
(boundary conditions) or over the whole surface by the surface force density
T,(x, y, t). In most cases considered in this book the surface force density
T, is of electrical origin and described mathematically as in Section 8.4.
Attention is confined in this chapter to the case in which T. = 0 and the
membrane is excited through boundary conditions.

In the case in which the membrane is very thin in the y-direction or in which
the deflection $ does not depend on y, (9.2.2) becomes

a2ý a2$
a2• S - + T7. (9.2.3a)

If we multiply this equation by a y-dimension 1,, 1,a• is the mass per unit
length, SI, is the total tension (newtons), and T,I, is the z-component of an
externally applied force per unit length. Written in this way, (9.2.3a) is also
the equation of motion for a wire (or a "string") under large tension and
constrained to move in only one transverse direction. To avoid problems with
nomenclature we write the equation of motion of a string as

m $f 2 S,, (9.2.3b)
a t" ax2

where m = mass per unit length (kilograms per meter),
f = total tension (newtons),

S, = transverse force per unit length (newtons per meter).

The equations of motion for a membrane and for a string are summarized
at the end of the chapter in Table 9.2.

9.2.1 Driven and Transient Response, Normal Modes

In the absence of an external force per unit length, (9.2.3a) and (9.2.3b)
state that the deflections E(x, t) of a membrane or a wire satisfy the wave
equation

•- vP a (9.2.4)
at2 ax2

9.2.1
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where the phase velocity is

v (= for a membrane, (9.2.5a)

,= f for a wire. (9.2.5b)

Hence the discussion of waves given in Section 9.1 applies equally well to
the deflections of the wire shown by Fig. 9.2.3.

The sinusoidal steady-state response of physical systems is of general
interest. This has been illustrated many times in the preceding chapters,
both in the context of lumped-parameter systems (Chapters 4 and 5) and
distributed systems (Chapter 7). The simple wire, described by (9.2.4),
gives an opportunity to develop the basic relationship between the driven
response of a continuous medium and its transient response. The insights
afforded by the discussion that follows form a necessary prelude to under-
standing the continuum electromechanical examples undertaken in Chapter
10.

A wide class of problems is illustrated by considering the situation in
which the wire is driven at one end (x = -1) by a sinusoidal excitation

ý(-1, t) = Easin Coat (9.2.6)
and fixed at the other end

4(0, t) = 0. (9.2.7)

Physically, the excitation must be turned on at some time. For convenience
we assume that this happens when t = 0, at which time the wire has the
initial conditions

4(x, 0) = 0(x), (9.2.8)

- (x,0) = o(). (9.2.9)
at

The initial and boundary conditions are imposed along the contours shown
in Fig. 9.2.4.

Now, we wish to determine the deflections 4(x, t) which satisfy these
initial and boundary conditions. By analogy with the solution of lumped

Fig. 9.2.3 Elastic wire or tightly wound helical spring under tension and plucked at one
end. The wave is seen as it propagates to the left. The deflections of the spring provide
a clear picture of the dynamics predicted by (9.2.4).
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0

(x,0)= o(x)-

-I

440O.t)=O

(x,t) of interest

V(-,t)= adsin wdt

Fig. 9.2.4 Initial and boundary conditions in the x-t plane for wire fixed at x = 0, sinu-
soidally excited at x = -1, and having given initial conditions over the length of interest
when t = 0.

parameter problems, discussed in Section 5.1.2, we divide the response into
a part with the same sinusoidal steady-state character as the excitation and a
transient part that is necessary to satisfy the initial conditions. In the discus-
sion that follows we see a close connection betweenthese two types ofsolution
and their lumped-parameter counterparts.

In the analysis of lumped-parameter systems, defined by constant-coeffi-
cient ordinary differential equations, solutions take the form e". Similarly,
distributed systems, defined by constant coefficient partial differential
equations, have solutions that take the form*

ý = Re [e"(w•k•'], (9.2.10)

where the (angular) frequency to and wavenumber k can, in general, be
complex. This is shown by substituting (9.2.10) into (9.2.4), which requires
that

CW= ±v,,k. (9.2.11)

This relation between ow and k plays a role in continuum systems similar
to that of the characteristic equation in lumped systems [see (5.1.6)]. Given
the value of k (which represents the dependence of the deflection ý on x),
we obtain the possible frequencies of the solutions to (9.2.4). The relation
between cw and k, given by (9.2.11), is referred to as the dispersion equation.
We shall now see that it plays a fundamental role in determining both the
sinusoidal steady-state and transient responses of continuous media.

* The general form of this solution could have been written as esteP, where s and P can be
complex, to indicate the similarity to the eat solution for total differential equations;
however, (9.2.10) with o and k real, represents a nondispersive wave which is our point of
departure for studying continuum electromechanical dynamics in this context.
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9.2.1a Sinusoidal Steady-State Response

It is assumed at the outset that the effects of initiating the excitation have
died away,* hence it is appropriate to look for solutions with the same real fre-
quency as the excitation. A plot of the dispersion equation (9.2.11) is shown
in Fig. 9.2.5, in which it is made evident graphically that for a given frequency
o = co, the dispersion equation will give two values of k, one the negative of
the other (k = ±o,1d/V,). Hence there are two possible solutions to (9.2.4)
in the form of (9.2.10). A linear combination of these solutions is

S= Re 4+exp [odat -- ) + exp [j(t + ] (9.2.12)

where ý+ and L are complex constants. Here it is evident that the response
is composed of two waves propagating in opposite directions along the wire
with equal phase velocities v,.

For the particular problem at hand deflections are zero at x = 0 (9.2.7).
This requires that the coefficients in (9.2.12) be negatives, so that solutions
take the form

4 = Re [&2j sin w -XdeI'd. (9.2.13)

The coefficient &- is, in turn, determined by the driving condition at x = -1
(9.2.6) (note that here we require the same frequency co = co in the response
as in the driving deflection).

& = -~ sin (o•,) sin codt. (9.2.14)
sin (Cod/V,)

Fig. 9.2.5 Dispersion equation for ordinary waves on a wire.

* We return to this point later because, in fact, they may not "die away," but rather grow
with time.
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This expression is the required sinusoidal steady-state response $(x, t). It
takes the form of a simple standing wave, as might be expected from the fact
that it was obtained by superimposing two traveling waves ofequal magnitude.

Remember that k is a linear function of o,, as shown in Fig. 9.2.5. Hence
the shape of the deflection varies as the frequency is changed. At very low
frequencies sin kx -r kx, and (9.2.14) becomes

S= -- s,) sin wdt. (9.2.15)

At any instant the low frequency deflections take the form of a straight line
joining the fixed end to the instantaneous position of the sinusoidally varying
deflection at x = -L. As the frequency is raised, the inertial effects of the
wire come into play, and there is a tendency for it to bow outward. The
response at low frequencies given by (9.2.15) would be found if the left-hand
side of (9.2.4) (the inertial force on the wire) were ignored. This quasi-static
behavior is completely analogous to the response of the elastic rod as
described in Section 9.1.3a.

At frequencies such that

k= =d ; n = 1, 2, 3,..., (9.2.16)
v, 1

the denominator of (9.2.14) goes to zero and the response becomes infinite.
This is an example of resonance, much as it is found in lumped-parameter
systems. The salient feature of the continuum system is the infinite number of
these resonances, each with a corresponding characteristic frequency and
distribution of $ in space. The relationship between the resonance frequencies
and deflections is shown in Fig. 9.2.6. In this figure an experiment is
sketched, wherein a taut spring is fixed at one end and excited at the other by
attaching it to a rod with a sinusoidally varying position. In Fig. 9.2.6a the
driving amplitude is very large to make evident the essentially linear distri-
bution of the spring displacement at low frequencies. In Fig. 9.2.6b, c, d the
excitation amplitude is kept the same and the resonances in the response are
made evident. Of course, in the physical situation the finite mechanical losses
limit the resonance amplitude to a finite value rather than the infinite value
predicted by (9.2.14).

From the dynamics of lumped-parameter systems we know that a resonance
peak indicates a driving frequency in the neighborhood of a natural frequency.
In the actual experiment of Fig. 9.2.6 these natural frequencies are not
purely real because mechanical damping adds an imaginary term; hence
excitation at the purely real frequency aw) gives rise to a bounded response.
We see next that the natural frequencies predicted by our theory, which
ignores the effects of damping, are indeed purely real. This we expect, in



(a)
3

(b)
x

x

(c) 0
0

-1

~Q~"_-I

(d)

Fig. 9.2.6 Sketch of experiment in which a taut spring is fixed at the left end and deflected
sinusoidally at the right end. (a) Deflections in the quasi-static limit at which the fre-
quency is low compared with the reciprocal of the time required for a disturbance to
propagate from one end of the spring to the other; (b) to (d) deflection as frequency is
varied from value at which k = 7r/lto k = 27r/l. The excitation amplitude is kept the
same in going from (b) to (d). Actual experiment can be seen in film, "Complex Waves I"
produced by Education Development Center for National Committee on Electrical
Engineering Films.
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view of the theoretically predicted resonances found in the response to the
sinusoidal driving condition (9.2.14). Our ideal lossless model is accurate for
predicting resonance frequencies, but not for calculating deflections at
frequencies near resonance. The adequacy of our idealized model, which
depends on the relative damping, must be ascertained for each physical
situation and the purpose for which the model is to be used.

9.2.16 Transient Response

The steady-state solution given by (9.2.14) does not in general satisfy the
initial conditions of (9.2.8-9). To satisfy these conditions, we require further
solutions to (9.2.4) that can be added to the steady-state solution. Since the
steady-state solution already satisfies the boundary conditions at x = 0 and
x = -1, we require that these solutions satisfy the boundary conditions

(0, t) = 0, (9.2.17)

(-1, t) = 0. (9.2.18)

Again we resort to solutions in the form of (9.2.10). Now, however, w is at
the outset an unknown frequency to be determined from the boundary
conditions. As in Section 9.2.1a, we take a linear combination of solutions
that satisfy (9.2.17). This gives a solution in the form of (9.2.13) with we - ow.

(xz, t) = Re (A sin kxeioj), (9.2.19)

where A is a complex constant. The second boundary condition (9.2.18) is
satisfied if

sin kl = 0. (9.2.20)
This is possible if

k = k,- ; n = 1, 2, 3 .... (9.2.21)

Recall the procedure for finding the driven response. We used the dispersion
equation to find the wavenumbers (the spatial behavior) by requiring that
eo =-Oa. Now, to find the transient response we have used the boundary
conditions to find the wavenumbers (9.2.21) and then used the dispersion
equation (9.2.11) to find the possible frequencies of vibration.

0w = Co. = -v,k,. (9.2.22)

This relationship is shown graphically in Fig. 9.2.7.
We have found two solutions in the form of (9.2.19) for each value of k,.

Hence we write the nth eigenmode*

%,(x,t) = [Ate 0"t + A-e-C"t]5n(x), (9.2.23)

* C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw-Hill, New York, 1951,
p. 234.

9.2.1
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Fig. 9.2.7 Allowed wavenumbers (eigenvalues) k = kn as they are related to the eigen-
frequencies an by the dispersion equation.

where the "Re" has been dropped by requiring that the constant A+ , if
complex, be the complex conjugate of A, and the eigenfunction en(x) is

ýn(x) = sin knx. (9.2.24)

The constants kn are called the eigenvalues of the problem, and the fre-
quencies +w, are the eigenfrequencies. Specification of n fixes k,, wC,and the
spatial dependence of the deflection mode.

The eigenfrequencies +w, are the natural frequencies of the distributed
system, in the sense discussed for lumped systems in Section 5.1.1. In a
distributed system the number of natural frequencies is infinite in contrast
to the finite number that characterizes a finite number of interconnected
lumped-parameter elements. The eigenfrequencies are placed in a familiar
context by considering a time dependence of the form es** [see (5.1.4)],
where, in view of (9.2.10), sn = +j-o,.

It has now been determined that the general deflection ý(x, t) is the sum of
the transient solution, given by superimposing the modes of (9.2.23) and the
driven response (9.2.14)*

ý(x, t) (A+ej."t + Ane O.t)(x) -ý sin (wo/v,)sin t. (9.2.25)
n=l sin (wl/v,)l

* It should be evident that this superposition is valid only when wa # wOn.
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The constants A+ and A- are determined by the initial conditions. To evaluate
these constants observe that the eigenfunctions are orthogonal,in the sense
that

0 0; nF m,

f dx = n=m, (9.2.26)
J -; n = m,

as can be seen by carrying out the integration for the particular functions
at hand (9.2.24). (More general comments concerning the orthogonality
relation are made in Section 9.2.lc.)

The orthogonality condition makes it possible to evaluate the constants
A+ and A-, for when t = 0 (9.2.25) must give the initial deflection of (9.2.8):

o(x) = (A+ + A-•)•(x). (9.2.27)
n=l

Now, if we multiply both sides of this expression by Em(x) = sin kmx and
integrate over the length of the wire, it follows from (9.2.26) that

2 0
At + A- fo(x)sin kx dx, (9.2.28)

for only one term in the infinite series is nonzero and that is the one in which
n = m.

A second equation for the A,,'s is the result of the initial velocity condition
in (9.2.9), which imposes the condition on the time derivative of (9.2.25):

(x ) = jw(A+ - A)(x) - sin (/v)x (9.2.29)
n=1 

sin (w,/v,)t

Now, when this equation is multiplied by Em(x) and integrated from -I to
0, it follows that

A+- A-_ 2 ( sin (Od/v,)x
mA - AM -o L ox) + df w, sin kmx dx. (9.2.30)

jO)ml sin (wjv1)l

The two expressions for the sum and difference of the A,'s (9.2.28) and
(9.2.30) are added and subtracted to obtain the explicit expressions

1 0 1 sin (wd/vO)xA+• o(J) + ro(X) + d sin ( sin kmx dx, (9.2.31)
1 ,w sin (w,/v,)l J

1 01 sin (wOdl/v,)x
Am = ý$o(x) - [o(x) + od sin (v,) sin kmx dx. (9.2.32)

j1]m sin (odvI)1

For a given set of initial conditions we can now compute the constants A 1;
hence the solution given by (9.2.25) is now completed.
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It is only in unusual situations that we become interested in the detailed
transient response of a continuum system. Here we are primarily interested
in the fact that the eigenmodes given by (9.2.23) can be used to represent the
consequences of arbitrary initial conditions. Hence the development demon-
strates that the eigenmodes play the same role in the distributed system as the
homogeneous solutions of (5.1.11) played in lumped-parameter systems.
For this reason it is not surprising that in Chapter 10 we use the eigenmodes
to study the stability of continuum systems. If one of the eigenfrequencies
has a negative imaginary part, the corresponding eigenmode is unstable and
becomes unbounded in time. This is a case in which the transient solution
does not die away but rather dominates the driven response. Even when all
the eigenmodes are stable, as described here, the theoretical transient solution
[the series in (9.2.25)] does not die away but continues to execute oscillatory
motions. Of course, in any real system that involves the vibrations of a wire
these transient modes would decay (due to damping), thus leaving just the
driven response.

Example 9.2.1. It is important to recognize that the eigenmodes represent those
oscillations of the continuous medium that can be independent of one another; that is,
with appropriate initial conditions, we can initiate any one of the eigenmodes at t= 0 and
the ensuing oscillations will involve it alone. This can be illustrated by considering the
following situation:

1.There is no drive, $d= 0.
2. When t = 0, the string is static, 40(z) = 0.
3. When t= 0, the string has the deflection $•=-- sin 317xll. Using these initial

conditions, it follows from (9.2.31) and (9.2.32) that the constants A+ and A; are

1fo 37rx

A+ = - sin I sin kmx dx, (a)

A- = A+, (b)

and the solution (9.2.25)becomes

(x,t) = m cos wat sin 3 (c)

From this result it is clear that because the initial deflection has the same spatial distribution
as the n = 3 eigenmode the motion persists as the single eigenmode n = 3, with the frequen-
cies +woa.

9.2.1l Orthogonality of Eigenmodes

A vector can be decomposed into three perpendicular components. We
say that these components are orthogonal, in the sense that no part of one
component is imbedded in another (i.e., the dot product ofany pair of vectors
is zero). It is in a sense analogous to this that eigenmodes are orthogonal.
The orthogonality condition of (9.2.26) expresses the fact that there is no
part of one of the eigenmodes imbedded in another. The decomposition of
initial conditions into these modes is illustrated in Section 9.2.1b.
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We were able to show that the orthogonality condition of (9.2.26) held by
simply substituting the eigenfunctions of (9.2.24) into the integral, which
could then be carried out. These functions are not always so easily integrated,
and it is often necessary to use a less direct method of finding the orthog-
onality condition.

Because the solutions were found by using the differential equation, we
expect that the orthogonality of two solutions is, in fact, a property of the
differential equation and the boundary conditions. To show this observe
that in terms of the eigenfunction E,, solutions, as given by (9.2.23), take the
form

=ý,(x)e*". (9.2.33)
n--1

It then follows from (9.2.4) that the eigenfunctions must satisfy the ordinary
differential equation

d• + k, 2, = 0, (9.2.34)
dx

2

where k, is introduced instead of the eigenfrequency o), because of (9.2.22),
the dispersion equation.

In view of the form taken by the orthogonality condition (9.2.26), we now
multiply (9.2.34) by another eigenmode Em and integrate the expression over
the length of the wire,

f0m dx + k,f I$mn dx = 0. (9.2.35)

The last term in this equation takes the form of the orthogonality condition.
Further manipulations have the objective of eliminating the first term, which
we integrate by parts* to obtain

[ d• -- dd dx + k~ •mn dx = 0. (9.2.36)
dxJ, J-,-dx dx f

The second term in this equation is symmetric in m and n, which suggests
that we now rederive this expression with the roles of m and n reversed to
obtain (9.2.36) with m - n. If this expression is then subtracted from (9.2.36),
the terms that are symmetric in m and n subtract to zero and we obtain

d[dý o + (k, 2 - km2) mJn dx = 0. (9.2.37)
dx dx -J-

For the particular example undertaken in Section 9.2.1b the eigenfunctions
were required to be zero at x = 0 and x = -1; hence the first term in

* fu dA = uv - fv du.
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(9.2.37) vanishes to leave the desired orthogonality condition

(k, 2 - km2)T ý. dx = 0. (9.2.38)

For differing eigenvalues (m # n) it is clear that the integral must vanish.
This type of orthogonality proof is useful when the eigenfunctions are too
complicated to make the performance of a direct integration easy.* Even
when the continuum dynamics are governed by the simple wave equation, as
illustrated here, the boundary conditions may be sufficiently complicated
to warrant a proof of orthogonality in terms of the differential equation.
The effect of boundary conditions on the normal modes is illustrated in the
next section.

9.2.2 Boundary Conditions and Coupling at Terminal Pairs

The most common type of electromechanical coupling to continuous
media can be modeled in terms of terminal pairs. The delay line analyzed in
Example 9.1.5 illustrated this point. Mathematically, this class of situations
is characterized by partial differential equations for the continuous media
that do not involve electromechanical forces. Then the coupling is accounted
for by means of boundary conditions, and when these boundary conditions
can be formulated in terms of a finite set of variables (say forces and dis-
placements) we can think of the problem formally in terms of coupling at
terminal pairs.

The acoustic response of an auditorium to a public address system or the
sonar sounding of the ocean floor exemplify this class of problem, in which
electromechanical coupling occurs through the boundary conditions. In these
examples the time required for an acoustic wave to propagate from one
extreme to another in the continuous medium is significant compared with
other times of interest, such as the period of excitation. Hence it is clear that
in these cases many of the most significant aspects of the mechanics must be
accounted for in terms of a continuum model. It is important to recognize,
however, that the electromechanical aspects of the problem can often be
modeled in terms of lumped parameters. We reserve the discussion of
compressible fluids as a continuous medium and acoustic waves in fluids for
Chapter 13 and use the simple wire and membrane models here to illustrate
the basic considerations.

We have three objectives in this section: first, to see how the boundary
conditions are written in the case of wires and membranes, including the
possibility of electromechanical coupling; second, to see how the notions

* Our analysis lacks a proof that we have not left out a mode. The completeness of normal
modes is discussed in R. V. Churchill, Fourier Series and Boundary Value Problems,
McGraw-Hill, New York, 1941, p. 43.
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" '-e= (xo-Ax,t)J^ Angle= -(xo+Ax,t)" Ax TX

Fig. 9.2.8 Membrane with deflection ý that depends only on (x, t) and is acted on by an
externally applied force f. at x = x0 . The force is distributed over the width 1, of the
membrane.

introduced in Section 9.2.1 apply when the normal modes are more compli-
cated than in a simple wire fixed at the ends; and finally, to compute the
sinusoidal steady-state response of an electromechanical system, using as an
example a simplified model of a loud speaker.

The one-dimensional motions of the membrane are defined by (9.2.3a),
which we write as

a2ý a2;
l = SE , + f,(t)u,(x - xo). (9.2.39)mIat2 JaX2

Here the force acting on the membrane in the z-direction is concentrated at
x = x,; hence the force is the product off,(t) (newtons) and a unit impulse at
x = x0.* This physical situation is shown in Fig. 9.2.8.

A boundary condition for the effect of the force f, on the mem-
brane can be derived in two ways. The more physical method con-
sists in writing a force balance equation
for the mechanical node formed by the
strip of membrane at x = xo. In addition sly (xo+Ax,t)
to the force f,, other forces are due to the f-
sections of membrane on either side of the
node. Remember that the membrane is l (x °' t )

under the longitudinal tension S; and
when the membrane tilts there is a com-
ponent of force in the z-direction which for
small amplitude deflections is proportional- ,

to the slope of the deflection evaluated O(xo-Axt)

just to the right and left of the node. Hence Fig.9.2.9 Forcebalancefor the strip
the forces are as shown in Fig. 9.2.9. of membrane at x = x0 in Fig. 9.2.8.

* The unit impulse function is most commonly used in circuit theory, in which its argument
is time t rather than space x. See, for example, A. G. Bose, and K. N. Stevens, Introductory
Network Theory, Harper & Row, New York, 1965.

9.2.2
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If we designate

lim (x + Ax) = x+ and lim (x - Ax)= x-
Az-0 Ax-o0

the force balance equation becomes

S+ SI, (x+) -- (x ) = 0. (9.2.40)

This equation represents a boundary condition for the membrane at x = x0.
Note the additional boundary condition on the deflection implied by the
fact that ý must be a continuous function at x = x0.

An alternative procedure for finding the boundary condition is familiar
because it is commonly used in connection with the electromagnetic field
equations.* By use of this approach the equation of motion (9.2.39) is
integrated from just to the left of x0 to a point just to the right of x0.

o+Aa 2as a+Aa+Ag
o'.l, ,- dx = SI, I- dz + f(t) uo(x - xo) dx.

.. _A. at2 o- ax ao."A
(9.2.41)

Because the deflection is a continuous function of x, the first term goes to
zero in the limit where Ax -+ 0. The first term on the right can be integrated
to obtain the first derivative of ý, whereas the last term is by definition
simplyf,(t). Hence we obtain

0 = s, (x) - (-) + f2 (t). (9.2.42)
ax ax

in the limit in which Ax -+0, which is the same as (9.2.40). Redefinition
of SI, as the total tension f makes this expression useful for wires under
tension.

The fact that the derivative is discontinuous at the point at which the force
is applied is not surprising, in view of what we would expect to find if a taut
wire were fixed at two ends and pulled upward at the center by a concentrated
force. Force equilibrium for a concentrated force necessitates an abrupt
change in the slope of the membrane or wire deflection.

The following example illustrates how normal modes and their eigen-
frequencies are found in a case in which the boundary condition of (9.2.40)
comes into play.

Example 9.2.2. A wire, with the tension f and mass per unit length m, is fixed at one
end (x = 0) and attached to a pair of springs at the other end (x= -1), as shown in Fig.

* See, for example, Section 6.2.2, in which Gauss's theorem was used to derive the relation-
ship between a singularity in volume charge density (the surface charge density) and the
electric displacement vector.
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KT

(Xt)

-1 0

Fig. 9.2.10 A wire is fixed at one end and attached to a pair of springs; the combined
spring constant is K.

9.2.10. We assume that the longitudinal tension on the wire is held in equilibrium at x = --
by a constant longitudinal force, so that the end executes a purely transverse motion. The
springs then exert a total force

f,= -- K$(-1-, t). (a)

Since there is no wire to the left of x = -1 to exert a transverse force on the node to which
the springs are attached, boundary condition (9.2.40) becomes (here SI, is replaced by the
wire tensionf)

-K$(-1, t) +f (-1, t) = 0 (b)

for this particular case. Of course, the other boundary condition is

S(0, t) = 0. (c)

Now, to find the eigenfrequencies we assume that solutions take the form

& = Re [f(x)ej•t], (d)

where w is an unknown frequency. Then the equation of motion [(9.2.3b) with S, = 0]
and boundary conditions require

d2i o2

d2 + k 2 = 0; k 2 (e)

-- K(--l) +f~ (--) = 0, (f)

$(0) = 0. (g)

The solution to (e) which satisfies boundary condition (g) is

= A sin kx, (h)

where A is an arbitrary constant. For this solution to satisfy (f)

KA sin kI +fkA cos kl = 0. (i)
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Fig. 9.2.11 A graphical solution of an eigenvalue equation [Example 9.2.2, (j)] shows the
lowest three roots kn.

Unless A is non-zero, there is no solution. Hence it follows from (i) that the eigenvalues
k, satisfy the equation

tan k = - L (kl), (j)KI

which results from rearranging (i). This equation has an infinite number of solutions
k = k,, which can be designated by the index n and found graphically, as shown in Fig.
9.2.11. Once the eigenvalues k, have been determined from the eigenvalue equation (j),
the eigenfrequencies follow from the dispersion equation (e)

0W,= ± k,v). (k)

Once again we have found modes in the form of (9.2.23). Note, however, that because of
the boundary condition at x = -1 the eigenfrequencies w, are not harmonically related.
Nevertheless, the modes are orthogonal in the sense of (9.2.38), as can be seen by evaluating
(9.2.37) for the case at hand. It follows from (f) that each of the eigenfunctions satisfies a
condition of the form

d# K
(-)= n(-) (1)

dx f

Using this fact, the first term in (9.2.37) becomes

(0)Lm(0) - (o)1,(0) [(-)(-) - (- (- . (m)dX dx f

In view of boundary condition (g), it follows that this expression is zero, and from (9.2.37),
that the modes (m) and (n) are orthogonal.

The purpose of the preceding example was to show how the boundary
conditions can revise the character of the normal modes. As we saw in
Section 9.2.1, these modes can be used to represent the response of a system
to initial conditions. Also, the eigenfrequencies of the system, including any
coupling as it occurs through the boundary conditions, play an important
role in determining the nature of the sinusoidal steady-state driven response.
This is illustrated by an example that involves electromechanical coupling
to a membrane through the boundary condition.
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Fig. 9.2.12 One-dimensional model of a loud speaker used in Example 9.2.3. The N turns
are attached to the plunger, which in turn is attached to the membrane at x = 0: (a) side
view showing a cross section of the transducer; (b) end view of the membrane showing
the width 4,.

Example 9.2.3. The system shown in Fig. 9.2.12 illustrates the basic construction of a
loudspeaker in which the lumped-parameter transducer excites the one-dimensional
membrane as a diaphragm. Of course, circular or elliptical diaphragms (or cones) are
commonly used in practical speakers. The simple system of Fig. 9.2.12, however, illustrates
much of the basic dynamics and pertinent techniques without the use of Bessel functions.
Our objective here is to study the multiple-mode dynamics of the membrane and to ascertain
how the motion of the membrane is reflected in such terminal characteristics as the input
impedance of the transducer.

The transducer shown is characteristic of those commonly used in low-frequency
speakers.* It is constructed coaxially about the center line and a permanent magnet
provides a radial magnetic field in the gap g. The N-turn voice coil is attached to a
cylindrical plunger which has the displacement s as shown. The plunger and voice coil
assembly is treated as a rigid body of mass M and is attached to the membrane at x = 0.
The membrane is fixed at the ends z = +4,.

* F. E. Terman, Radio Engineering, McGraw-Hill, New York, 1947, pp. 870-877.

9.2.2
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Meml

f Voice- coil f,
assembly
mass M

Fig. 9.2.13 Force equilibrium for the transducer plunger attached to the membrane at
X = 0.

We can establish the boundary condition on the membrane at z = 0 by reference to
Fig. 9.2.13 which shows the free-body diagram of the voice coil assembly and the membrane
in the vicinity of x = 0. The forcefe is the force of electric origin applied to the voice coil
and f£ is the force applied to the plunger by the membrane. The equation of motion for
the mass M is then

d 2s
M72 =2 e -f-a (a)

Recognizing that
ds a8

=- (o, t)dt at
and using the boundary condition (9.2.40) to eliminatef,, we obtain

M - (0, t) =fe + SI, (o+, t) - (0-,t). (b)

In addition the boundaries are fixed at x = +l,; thus

ý(lm, t)= e(-l, t) = 0. (c)

The problem can be simplified by recognizing that when the membrane is excited in the
middle (x = 0) with both ends fixed, the response is symmetrical in x:

ý(X, 0)= ý(-X, t).
Consequently, we recognize that

(0-, t) = (0-, t)

and write (b) as

M-•(0, t) = f + 2SI, a (O, t). (d)

Attention can now be confined to 0 < x < I'.
To complete the description of the system the forcefe must be related to the current i(t)

at the input terminals of the transducer. Thus we digress and use the techniques of Chapters
3, 6*, and 8 to make a mathematical model for the transducer.

* See Tables 3.1 and 6.1, Appendix E.
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Magnetic material

H d
Ho ---

Turn density N/d

u=d u=0

Fig. 9.2.14 Magnetic field intensity H in the gap g shows the uniform field H0 that results
from the permanent magnet and the distribution of field from the current i.

With reference to Fig. 9.2.12, the dimension g is assumed to be small enough that the
radial variation of fields in the gap can be neglected. The magnetic field intensity in the gap
is radial, independent of radius, and composed of a part H0 due to the permanent magnet
and a part due to current in the voice coil. The total field intensity in the gap can be found
by using the integral form of Amlpre's law with the contour (a) in Fig. 9.2.12 and assuming
that the N voice-coil turns are uniformly distributed over the distance d. The field dis-
tribution is illustrated in Fig. 9.2.14.

To find the force of electric origin fe we use the volume integration of J x B described
in Section 8.1. The assumptions of no radial variation of magnetic field intensity and of a
uniformly distributed voice coil with many turns N lead to the result that the contribution
to fe from a length (du) of the voice coil located at u is

df = 2rR Ni (du)po Ho + - di) .

Note that J x B is everywhere in the positive s-direction (see Fig. 9.2.12). Integration of
this expression over the length d of the voice coil yields

fe= 2RN(PoHi+ 2g " (e)

The first term represents the interaction between voice coil current and the field applied
by the permanent magnet. The second term results from the current in one turn interacting
with the field generated by current in all the other turns and is nonlinear in i. For good
fidelity of sound reproduction a speaker is designed so that fe is proportional to i;
consequently, good design results in the inequality

INi
Ho )> -j. (f)

We assume in what follows that this inequality is satisfied and we can write f as

f= Boli, (g)
where

B ==Io,

I = 2wrRN.

9.2.2
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The force produced by a voice coil is often written as in (g)* by ignoring the nonlinear term
in (e) which can be eliminated only when condition (f) is satisfied.

The flux dý, linked by an elemental coil at position u which has axial length du and there-
fore the number of turns (N/d) du is found by using the surface of integration (b) shown in
Fig. 9.2.12. This surface has the elemental coil as its boundary and extends through the
air gap and over the end of the center pole piece. There is no contribution to the flux from
that part of the surface at the end of the pole piece; consequently, the flux linked by the
elemental coil at position u is

dA =() du(27oR)oos(Ho + + u o + du

or
N) (l N2Ni

dA,= (= d du(27R)yo HO + -) + Hou + -u T . (h)

The total flux linked by the voice coil is found by summing the contributions dA, of each
coil. This amounts to integrating (h) over the length (d) of the coil

NNi+ u2
= 2nTRpo FHO(s + u) + yIs + u 2dlj du

or

S= 2nRiN s + 2d + ts + . (i)

When we use condition (f), we can neglect the second term in (i) and write the terminal
voltage of the voice coil as

dA ds

dt dol. (j)

Recognizing that
ds aý

we write (j) as

v = Bol (0, t). (k)

Equations c, d, and g specify the boundary conditions applied to the membrane and (k)
expresses the voltage seen by the input current source due to motion of the membrane.

We are interested in the steady-state response of the membrane to a sinusoidal voice-
coil current

i(t) = Re (leiwt) (1)

where i is a complex number that determines the amplitude and phase of the input current
and o is real and the angular frequency of the input signal. The equations of motion for
the membrane and transducer are linear with constant coefficients; consequently, all
dependent variables have the same time dependence as (1). Hence we assume that

4(x, t) = Re [ý(x)eiJ't], (m)

where 4(x) is the complex amplitude.

* H. H. Skilling, Electromechanics, Wiley, New York, 1962, p. 19.

~
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The wave equation is satisfied by ý everywhere on the membrane. Hence substitution
of (m) into (9.2.3a), with T, = 0, and cancellation of the exponential yields

d2
d + k2 = O, (n)

where the wavenumber k is obtained from

k2 -- (0)

The general solution for (n) can be written as

(x) = A sin kx + B cos kx, (p)

where we have taken k to be the positive root of (o).
We first use the boundary condition of (c) to eliminate B from (p) with the result that

(x) = A(sin kx - tan kl x cos kx). (q)

Next, we use (1) and (m) in (d), cancel out the time-dependent factor ej~It, and obtain

--w2M (0) = Boll + 2SI, X (0). (r)

Substitution of (q) into this expression and evaluation of the constant A yields

A= B (s)
W2M tan kl x - 2kSI,

and it follows from (q) that

(sin kx - tan kl x cos kx)
(x) . .. Boll. (t)(w 2M tan kl x - 2kSl)(

This result can be used with (m) to describe the motion at any point on the membrane.
When we write the terminal voltage of the voice coil as

v = Re (Jejit),

we can use (k) and (t) to write the input admittance as

I oM 2 bmSI, 1
S=j - ,O cot klx (u)

Vý (BO1)2 (Bo)2

Note that the first term depends only on the lumped-parameter loading of the transducer
by the voice-coil assembly mass M and that the second term depends on the properties
of the membrane. Note further that the admittance is imaginary, which indicates a lossless
system.

Equation u can be written in terms of two susceptances S1 and S2; thus

-jSi + jS,, (v)
V

where
wM

S, - (Bo,

S, (Bol)2 cot kl,.
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I
I

Fig. 9.2.15 Equivalent circuit seen by the current source i(t) for the transducer shown in
Fig. 9.2.12.

The susceptance S1 appears capacitive with equivalent capacitance

M
(Bol)2

Thus we can draw the equivalent circuit of Fig. 9.2.15 to show separately the effects of the
mass M and the membrane on the excitation source.

To study the effects of the membrane it is convenient to define a normalized frequency
kl, by

kI, = wol, .

The susceptances S1, S2 and the total susceptance are plotted as functions of the normalized
frequency in Fig. 9.2.16. The susceptance S, is linear with frequency, as indicated, but S2

0

E

rU

S8t•

Fig. 9.2.16 The susceptance S of the system shown in Fig. 9.2.12 as a function of normal-
ized frequency.
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varies periodically with frequency, having zeros at kl x = rr/2, 3r/2, 57r/2.. . ,and poles at
kl = 0, 7r, 2nr, 37r ..... The addition of S, and S 2 to obtain the total input susceptance
shows that the positions of the poles are the same as for S, but the zeros are reduced in
frequency by the mass to values of klU indicated by points (1), (2), and (3) in Fig. 9.2.16.
At a pole of the total susceptance the voltage is zero, regardless of the amplitude of the
current, whereas at a zero of (S 1 + S2) zero current is required to obtain a finite voltage
amplitude. This reflects our assumptions made initially that the membrane and transducer
are not affected by electrical damping, viscous damping, or acoustic radiation. Of course,
in loudspeakers the objective is to transfer as much energy as possible to an acoustic load
(usually the air). The energy transfer, however, is usually comparatively small; consequently,
our analysis gives a reasonably good first approximation to the behavior viewed from the
electrical terminals. The resulting acoustic radiation can in many cases be computed under
the assumption that the membrane motion derived here is not affected appreciably by the
loading.* As we expect, the model is most in error at frequencies close to the singularities
(poles and zeros) of admittance. The approximation can thus be improved by assuming
small losses and treating the admittance in the vicinity of a singularity by the standard
techniques of circuit theory.t

As indicated by the curves of Fig. 9.2.16, the system has multiple resonances due to the
susceptance S2. This is a property of systems involving continuous media. The resonance of
interest here results when a wave initiated at x = 0 travels to x = 1, where it is reflected,
and arrives back at x = 0 with a phase that reinforces the driving signal. Without the mass
M, this occurs when the length lx is an odd number of quarter wavelengths

ix = P, N A..... (w)

We have defined the wavelength 2. in the usual way as the phase velocity divided by the

frequency

V2

Each resonance described by (v) corresponds to a natural mode, each mode being character-
ized by a particular frequency. The natural modes have real frequencies and thus they appear
as resonances in the transfer function.

With the mass M included, the resonances as given by points (1), (2), and (3) in Fig.
9.2.16 correspond to different modes on the membrane. We use the values of klx at each
of these points (Fig. 9.2.16) in (t) to find the amplitude of the membrane displacement for
the first three modes. The results are shown plotted in Fig. 9.2.17. Remember that from
(m) the displacement is a sinusoidal function of time at any position x. Thus Fig. 9.2.17
represents what would be seen in a sideview snapshot taken at the instant of maximum
deflection of the membrane. Alternatively, each curve of Fig. 9.2.17 can be interpreted as
the envelope of a standing wave. The curves are plotted under the assumption that A is
finite, as it is if the excitation I is decreased to zero as the resonance frequency is approached.

It should be clear from a study of Fig. 9.2.17 that the higher order modes will tend to
excite acoustic signals that interfere with each other; for example, with the membrane in
mode (3) an acoustic signal leaving the membrane at x/1l x 0.8 is opposite in phase to the
signal leaving the membrane at x/ll x 0.3. When these two signals combine after having
traveled the same distance, they interfere destructively. Such a property sets a design

* The applications of membranes to acoustic systems are discussed in W. P. Mason,
ElectromechanicalTransducersand Wave Filters, Van Nostrand, 1942, p. 158.
t E. A. Guillemin, Introductory Circuit Theory, Wiley, New York, 1953, pp. 297-306.
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Fig. 9.2.17 Envelope of membrane deflection at the first three resonances of Fig. 9.2.16.

limitation on acoustic devices of this type. Moreover, when operation is in a higher order
mode, the response function [ (x)/I] varies violently with frequency. This effect is un-
desirable for most acoustic applications.

When the device is operated at low frequencies such that

kl x << 1,
(t) shows that the response function is

I - x(I. -

I L1ly - •MiVIx

In this case all points on the membrane have the same relative phase indicated by the low-
frequency limit in Fig. 9.2.18. The membrane acts quasi-statically or as a massless spring
(in the sense of Section 9.1.3a) and resonates with the mass M at approximately the
frequency given by point (1) in Fig. 9.2.16. Most loudspeakers are operated above this first
resonance but below the second resonance. The effect of acoustic radiation resistance and
cone geometry are important factors in the design of a high-fidelity device.*

I

Fig. 9.2.18 Membrane deflection in the low-frequency limit at which the membrane
behaves as a massless spring.

* F. E. Terman, Radio Engineering, McGraw-Hill, New York 1947, p. 872.

I I ( I(

-

(x1-x) Bol

0 x 1

X o
P ~rn ~711



Summary

9.3 SUMMARY

Three practical, one-dimensional models introduced to illustrate the
significance of continuum mechanical equations of motion are summarized
in Table 9.2. The wire and membrane are used extensively in Chapter 10 to
illustrate important types of continuum electromechanical behavior as they
are found when fluids, plasmas, electron beams, or elastic media interact
with electromagnetic fields. The wave dynamics studied in this chapter provide
a background for understanding the more complicated dynamics that result
in the presence of material convection and electromechanical coupling.
The space-time behavior of waves, described in Section 9.1, is important in
Chapter 10 for determining appropriate boundary conditions and visualizing

Table 9.2 Summary of One-Dimensional Mechanical Continua

Introduced in Chapter 9

Thin Elastic Rod

825 a26
P - = E, + F,

a8
r 0 7T 9) T=E-

6--longitudinal (x) displacement
a T-normal stress

p-mass density
E-modulus of elasticity

F,--longitudinal body force density

Wire or "String"

m ý 2 = f + s,

-- transverse displacement
0UO f m--mass/unit length

.f--tension (constant force)
S,-transverse force/unit length

Membrane

at 2 82b y2-+ T

-- transverse displacement
t,-surface mass density
S-tension in y- and z-directions

(constant force per unit length)
T,-z-directed force per unit area
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transient situations. At the same time the frequency-wavenumber picture of
the dynamics, represented by the dispersion equation introduced in Section
9.2, provides the unifying theme for Chapter 10.

PROBLEMS

9.1. A long thin steel cable of unstressed length I is hanging from a fixed support, as
illustrated in Fig. 9P.1. Assume that the origin of coordinates is at the support and that x
measures positive as shown. Assume that the steel cable has the following constants:

Cross-sectional area A = 10- 4 m2

Young's modulus E = 2.0 x 1011 N/m2

Mass density p = 7.8 x 10i kg/m s

Maximum allowable stress Tmax = 2 x 109 N/m2

x

Steel cable -

Fig. 9P.1

(a) Find the length of cable Ifor which the maximum stress in the cable just equals the
maximum allowable stress.

(b) Find the displacement 6 and stress T in the cable as functions of z.
(c) Find the total elongation of the cable.

9.2. Two thin elastic rods are arranged as shown in Fig. 9P.2. The first rod has modulus of
elasticity El, density Pl, and cross-sectional area A1. It is attached at one end to a rigid
wall and at the other to a very thin rigid plate of mass m and area Am. On the other side of

V0

Fig. 9P.2

1




