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Chapter 10

DYNAMICS OF
ELECTROMECHANICAL CONTINUA

10.0 INTRODUCTION

In Chapter 9 we treated simple examples of mechanical continua to estab-
lish the basic techniques of making mathematical models and to illustrate the
kinds of dynamic behavior and the mathematical methods needed in analyses.
In that chapter simple elastic continua at rest were excited at boundaries so
that the resulting continuum dynamics were determined by mechanical
characteristics alone.

In this chapter we still restrict our attention to simple elastic continua but
we generalize on the treatment of Chapter 9 to include the effects of distributed
forces of electric origin and material motion. By the use of simple models we
illustrate the basic phenomena that occur in a wide variety of physical systems
and the analytical techniques used in their mathematical description. In spite
of the diversity of physical situations in which continuum electromechanical
interactions are important, a unity results from mathematical techniques that
are common to all of the situations. It is our purpose here to illuminate, in the
simplest context possible, these mathematical techniques and the physical
phenomena they describe.

As stated earlier, the techniques presented are fundamental to a wide
variety of physical situations. It is therefore helpful for the purpose of appre-
ciating our objectives to review some of the technical areas concerned with
continuum electromechanics.

Magnetohydrodynamics (MHD) is concerned with the interactions of free
currents and magnetic fields in fluids (liquids and gases) which have high
enough electrical conductivity that a quasi-static magnetic field model is
appropriate for describing the electromagnetic part of the system. To reflect
more accurately the nature of the mechanical medium this area is sometimes
referred to as magnetogasdynamics(MGD)or as magnetofluiddynamics(MFD).
Areas of application include pumping and levitation of liquids (usually
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metals), orientation and confinement of extremely hot ionized gases or plas-
mas, as, for example, in thermonuclear fusion experiments,* electric power
generation from ionized gases produced by combustion of fossil fuels or from
heat produced in a fission reactor,t and space propulsion achieved by electro-
magnetic acceleration of ionized gases.$ Scientific interest in this area in-
cludes such geophysical and astrophysical topics as the origin of the earth's
magnetic field in its liquid metal core and the dynamics of stellar structures
composed of highly ionized gases.

A similar area isferrohydrodynamics,which is concerned with magnetiza-
tion interactions of magnetic fields with a ferromagnetic fluid.§

Electrohydrodynamics (EHD) is concerned with interaction between elec-
tric fields and free or bound (polarization) charges in fluids. The fluids may be
extremely good insulators, slightly conducting, or even highly conducting.
The distinguishing feature is that the electromagnetic part of the system is
described by a quasi-static electric field model. Applications of EHD include
pumping and levitation of liquids and gases, extraction of contaminants from
gases such as smoke,** mixing of liquids, orientation of liquids in near-zero-
gravity environments, augmentation of heat transfer, and property measure-
ments in fluid systems. EHD interactions also occur in meteorology, in which
charge distribution in the atmosphere (as in a thunderstorm) is important,
and in surface physics, in which the distribution of charges at an interface is
significant, as in frictional electrification.tt

The engineering and scientific applications ofelectron andion beams involve
continuum electromechanical interactions. Electron beams, confined by
magnetic fields and interacting through electric fields with distributed electric
circuits, are commonly used to generate power at microwave frequencies.1T
In such applications the beam is represented by quasi-static equations, but the
distributed electric circuits support electromagnetic waves and are not amen-
able to quasi-static analysis. Electron beams are also used for heating, weld-
ing, forming, and purifying metals. Charged particle beams, electrons and
ions, are used for medical treatment, for measuring collision cross sections,
and for heating plasmas.§§

* D. J. Rose and M. Clark, Jr., Plasmas and Controlled Fusion, M.I.T. Press and Wiley,
New York, 1961.
t G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New
York, 1965.
1 Ibid., p. 447.
§R. E. Rosensweig, "Magnetic Fluids," Intern. Sci. Technol., 55, 48-56, 90 (July 1966).
** H. J. White, IndustrialElectrostatic Precipitation, Addison-Wesley, Reading, Mass.,
1963.
tt L. B.Loeb, Static Electrification, Springer, Berlin, 1958.
++C. C. Johnson, Fieldand Wave Electrodynamics, McGraw-Hill, New York, 1965, p. 275.
§§ T. H. Stix, The Theory ofPlasma Waves, McGraw-Hill, New York, 1962, p. 107.
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Plasma dynamics* is concerned with the behavior of gases composed at
least in part of charged particles. Thus continuum electromechanical inter-
actions will affect the behavior of a plasma. Probably the most common
example of a plasma is the ionized gas in a fluorescent lamp. Other examples
are gas-filled rectifiers, flames such as rocket exhausts, and the sun. The
physical characteristics of ionized gases can assume many forms. In certain
cases, such as proposed fusion devices and MHD generators, the plasma
behaves as a highly conducting fluid and its dynamic behavior is described
by a magnetohydrodynamic approximation. In other cases the plasma is only
slightly ionized and the electrohydrodynamic equations are appropriate. In
still other cases the plasma may be so tenuous that it is best described as a
collection of noninteracting particles in imposed magnetic and electric fields.
In all of these regimes the plasma exhibits the basic phenomena of wave
propagation and instability, subjects that are treated in this chapter.

Electrons and holes in semiconductors, usefully modeled as plasmas, give
rise to the name solid-stateplasmas.t These charges behave collectively like
gaseous plasmas and are thus amenable to analysis with the same types of
mathematical model. Electromechanical interactions in solid-state plasmas are
used to achieve microwave power generation and to make electronic com-
ponents with a variety of useful terminal characteristics.

Electromechanical interactions of several types occur with elastic solids
and lead to useful devices such as transducers. Electroelasticity and piezo-
electricity+: result from polarization interactions in elastic dielectrics and are
modeled as quasi-static electric field systems. Magnetoelasticity and piezo-
magnetics§ result from magnetization interactions in elastic solids and are
modeled as quasi-static magnetic field systems. Magnetoelastic phenomena
have found applications in microwave magnetics** in which electromechanical
interactions lead to useful microwave components.

The foregoing examples illustrate the diversity of physical situations, in
which continuum electromechanical interactions are important, and the
variety of applications resulting therefrom. We now proceed to study the kinds
of dynamical phenomena that can result from these interactions.

In the study of lumped parameter systems defined by linear, constant-
coefficient equations, the temporal behavior is characterized by e"t, as
illustrated in Chapter 5. Similarly, the dynamics of a continuum with a single

* L. Spitzer, Jr., Physics ofFully Ionized Gases,Interscience, New York, 1956. (The plasma,
as defined on p. 17 of this reference, is somewhat more specifically defined then in our
discussion.)
t R. Bowers and M. C. Steele, Proc. I.E.E.E., 52, 1105 (1964).
1 W. P. Mason, Physical Acoustics, Vol. 1, Part A, Academic, New York (1964, pp.
169-270).
§ Ibid.
** W. F. Brown, Micromagnetics, Interscience, New York, 1963.
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space dependence x can be represented in terms of solutions in the form*

= Re e 't- •). (10.0.1)

The (angular) frequency ot can, in general, be complex

Co = or + jtit, (10.0.2)

just as s can be complex in the lumped-parameter case. As we shall see, the
physical significance of a complex ow is not so clear as it is in the lumped-
parameter case because the temporal dependence is only part of the story.
The wavenumber k, which represents the spatial dependence, can also be
complex:

k = k, + jk,. (10.0.3)

The sections that follow have the objective of imparting some physical
and mathematical insight as to how wave solutions in the form of (10.0.1) are
used to describe the dynamics of one-dimensional continuous media.

10.1 WAVES AND INSTABILITIES IN STATIONARY MEDIA

It is the purpose of this chapter to illustrate the dynamics of electro-
mechanical continua. This is done by making use of the one-dimensional
model for the wire and membrane, introduced in Chapter 9. It should be
evident from the introduction that the cases considered in the following
sections illustrate the dynamics of a variety of purely mechanical and purely
electrical as well as electromechanical systems. A salient feature of the
dynamics of systems involving continuous media is the effect of material
motion. Our development in this section is confined to the dynamics of
systems in which the mechanical medium is at rest. The effect of convec-
tion, or gross material motion, on these systems is taken up in the next
section.

It is helpful to associate fundamental types of dynamical behavior with a
particular physical situation. One of the simplest we can imagine for this
purpose is the "string" or wire under tension. If the wire has an equilibrium
tensionf and a mass per unit length m, its transverse deflections are governed
by the equation

a2E a25
m- = f + S,, (10.1.1)at, ax2

where S, is a transverse force per unit length (see Table 9.2). In the sections
that follow we consider electromechanical coupling to the string through

* The use ofjo rather than s is simply a matter of convention.

I 
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S,. Before embarking on this development it would be helpful to recall the
essential features of the string dynamics in the absence of coupling.

10.1.1 Waves without Dispersion

In the absence of external forces the string deflections ý(x, t) must satisfy
the wave equation [(10.1.1) with S, = 0]

a2
$-= -, (10.1.2)

t" ax2 2x

where v, = /f/j. In Section 9.2.1 we found both the sinusoidal steady-state
and the transient response (normal modes) of the string by making appro-
priate use of solutions in the form of (10.0.1). Substitution of the assumed
solution into the equation of motion (10.1.2) shows that woand k must be
related by the dispersion equation

)2 = 2k2. (10.1.3)

Thus the co-k plot for waves on the simple string appears as shown in Fig.
10.1.1. For the real value of frequency woshown in the figure there are two
solutions (±-O) to (10.1.3) for the wavenumber k.

From the form of the wave solution (10.0.1) it follows that points of con-
stant phase move along the x-axis with a phase velocity

v= - . (10.1.4)
k

Figure 10.1.1 shows that for a given frequency there are two waves with phase
velocities that are negatives. Note that the phase velocities of the waves are

Fig. 10.1.1 Dispersion equation for waves on the simple string.

10.1.1
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simply ±-v, and are independent of the frequency; that is, the dispersion equa-
tion for a given wave is a linear relationship between o) and k. For the simple
string, waves with differing frequencies (or wavenumbers) propagate with the
same phase velocity and are therefore said to propagate without dispersion.

10.1.2 Cutoff or Evanescent Waves

The string, described by (10.1.1), can be a taut conducting wire (or tightly
wound helical spring) carrying a current that interacts with a magnetic field
(Fig. 10.1.2). Here the string is stretched along the x-axis between two magnet
coils arranged to give a null in magnetic field along the x-axis. The wire is free
to vibrate in the horizontal plane of the magnet coils. For small excursions
from the x-axis the wire experiences a magnetic flux density B, which is
essentially a linear function of ý. Hence, when a current I is passed through
the wire in the direction shown, a restoring force per unit length I x B tends
to return the wire to the x-axis:

Szi, = I x B = -Ibti,; (10.1.5)

b is shown in Fig. 10.1.2b. This is the force-displacement relationship of a
simple spring. The current I and flux density B interact to produce a spring-
like force per unit length that tends to return the wire to its equilibrium
position.

With the addition of coupling to the magnetic field, the equation of motion

Wire under tension /_

(b)
Fig. 10.1.2 (a) A conducting wire is stretched along the x-axis and is free to undergo
transverse motions in the horizontal plane. Magnet coils produce a field B which is zero
along the x-axis; (b) the wire carries a current I so that deflections from the x-axis result in
a force that tends to restore the wire to its equilibrium position.

--
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Fig. 10.1.3 Dispersion relation for the wire subject to a restoring force distributed along
its length (for the case shown in Fig. 10.1.2). Complex values of k are shown as functions
of real values of co.

(10.1.1) becomes

a = a2 % Ib- - - 2 = (10.1.6)
at2  aX2 m

Now, substitution of solutions in the form of (10.0.1) gives a dispersion equa-
tion that is not simply the linear relationship between w and k of (10.1.3).
Rather

w2 = v=sk 2 + w0
2. (10.1.7)

For large values of k, co does not depend significantly on wto, hence the
asymptotes of an w-k plot are simply the two straight lines of the co-k plot
with we = 0 (Fig. 10.1.1). If we note further that (w = ±ow,, where k = 0,
the wc-k plot of Fig. 10.1.3 can be easily sketched. The effect of the current
I is to evolve a pair of hyperbolas from the two straight lines of Fig. 10.1.1.
As the current I is raised (with B fixed), the intersections wc move out along
the co-axis.

The dispersion equation is quadratic in both w and k. Hence for each real
value of k two values of o) can be seen from the solid curves of Fig. 10.1.3
always to be real. This relationship, however is not true if co and k are inter-
changed. Real values of co give real values of k only if wol > w• , as can also be
seen in the figure. Solution of (10.1.7) shows that in the range Iwl < w• the
dispersion equation gives imaginary values of k represented by the dashed
curve in Fig. 10.1.3. Note that when k = jk, in (10.1.7) the analytical geomet-
ric relation between co and k1 is an ellipse; for example at the points at which
ow = 0 (10.1.7) shows that k = -j- fov s,.

The most evident consequences of introducing the additional force, which
we can think of as resulting because of the current I, are illustrated by

_·I·~·__

10.1.2
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considering the response to a sinusoidal, steady-state driving function. For
purposes of illustration the spring is fixed at x = 0 and given a sinusoidal
displacement at x = -- I:

M(0, t) = 0, (10.1.8)

ý(-1, t) = ý$ sin wat. (10.1.9)

These conditions are the same as those considered in Section 9.2.1a for the
wire with no external force.

To match the driving condition the frequency co of the dispersion equation
is taken as Wod,and solutions have the form of (10.0.1) for two values of k
which can be found by solving (10.1.7).

k = W-- (10.1.10)
vs

These wavenumbers are shown graphically in Fig. 10.1.3.
To avoid ambiguity the wavenumbers consistent with the frequency

cw = cod, given by (10.1.10) are written as

k = - Ikj, wd > woo,
(10.1.11)

k = -j Ik1i, o)d < Co.

This is the notation used in Fig. 10.1.3. At this point we have established that
there are two waves on the wire with the frequency cod, and the boundary
conditions are satisfied by taking a linear combination of these waves. For
Cod > COt,

-= Re (Ce-i l"ýId + Delikr/l)ei'
jMd (10.1.12)

and a similar equation with Ikrl -i- Ikil for Cod < co,. The constants C and D
are determined by the boundary conditions (10.1.8) and (10.1.9). It follows
that for

Wo > Weo, = -a k sin codt, (10.1.13)
sin Ik, I

and for

Cod < C,, = - sa sin Cat, (10.1.14)
sinh 1k2 l 1

The significance ofthe imaginary wavenumbers is now apparent. Figure 10.1.4
shows the effect of raising the current I (i.e., o,,) with the driving frequency Co,
fixed. With no current, waves on the wire have the same familiar appearance
as in Section 9.2.1a (see Fig. 9.2.6). As long as Od > co,, this same general ap-
pearance prevails and the wire tends to bow outward and assume the shape
usually found with standing waves. When co, has been raised to the point at
which it coincides with oa,, the wire takes on the appearance shown in Fig.
10. 1.4b. Here the effect of inertia, which tends to make the wire bow outward,



Waves and Instabilities in Stationary Media

/

-> X

'd = Wc

Sý-xI -

/

Fig. 10.1.4 Envelope of wire deflection in magnetic field. The wire is fixed at the right
end and driven at a fixed sinusoidal frequency at the left end. The w-k plots show the
effect of the current I on the dispersion equation. The current I (or cutoff frequency o,)
is being raised so that (a), I &0, (b) I is sufficient just to cut off the propagation (wd = oe),
and (c) the waves are evanescent, CwO< wo. This experiment can be seen in the film "Complex
Waves I," produced for the National Committee on Electrical Engineering films by
Education Development Center, Newton, Mass.

is just canceled by the restoring force due to L The wavenumbers are zero and
the envelope of the wire deflection is a linear function of x. The limit of either
(10.1.13) or (10.1.14) as k -* 0 yields

(10.1.15)= -- d, sin Odrt.

This is called the cutoff condition, hence w, is the cutofffrequency. As wc is
raised still further, the wire bows inward, as shown in Fig. 10.1.4c. Here the

10.1.2
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Distributed
springs /Wire

,(X,0

Fig. 10.1.5 With the current as shown, the system in Fig. 10.1.2 gives rise to forces on the
wire that are equivalent to springs distributed along the length of the wire.

deflection amplitude simply decays spatially as we move away from the point
of excitation. The spatial dependence of (10.1.14) is monotonic in x, so that
the wire deflections have the same phase as the excitation. Note that these
decaying or evanescentwaves do not involve dissipation. They are present here
because each segment of the wire is subject to a springlike restoring force that
tends to push it toward the x-axis. An equivalent physical situation is shown
in Fig. 10.1.5. Without recourse to mathematics we expect that when the left
end of the wire is slowly displaced upward the wire tends to bow inward
toward the x-axis. This is all that (10.1.14) is telling us. The restoring force
that we would feel in slowly displacing the end of the wire would be the same
as if we were displacing the end of a spring.

As we shall see, continuous media excited in the sinusoidal steady state
can also support spatially decaying waves because of damping (dissipation of
energy). Even more interesting are situations in which complex wavenumbers
mean that waves grow spatially rather than decaying. Both cases, which are
considered in later sections, involve dispersion equations that give complex
values of k for real values of o, just as we have here, and it is important to
establish a physical picture of their significance.

Evanescent or cutoff waves are often found in studies of propagation
through guiding structures. We shall see this in Section 10.4.1 in which waves
that propagate in the x-direction on a membrane fixed along its edges at
y = 0 and y = b have a cutoff frequency below which they are evanescent.
This is an example of a wide class of two- and three-dimensional situations in
which propagation in a longitudinal (x) direction is restricted by boundary
conditions in the transverse directions (y and z). The transverse boundaries
restrict (or squash) the dynamical motions, just as they do in Fig. 10.1.5.
Before propagation can take place the frequency of the drive must exceed
some cutoff value in which the constraints produced by the transverse bound-
aries are canceled by a dynamic effect such as that resulting here from inertia.
This is illustrated for waves in elastic structures in Sections 11.4.2b and 11.4.3.
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Cutoff waves are found also in electromagnetic waveguides,* in which they
are of considerable significance in establishing the propagation of a single
mode (all modes but one are cutoff) and in which they are sometimes used to
make microwave attenuators.

When an electromagnetic wave propagates through a medium, such as a
plasma, it is possible that the medium will have the same effect on the waves
as the springs of Fig. 10.1.5 have on waves propagating on the string. Hence
cutoff or evanescent waves are of considerable importance in studies of wave
propagation through plasmas.t Example 10.1.1 considers a situation, similar
to that found in studies of the hydromagnetic equilibrium of fusion machines,
in which evanescent waves account for the stabilizing (stiffening) influence of
transverse boundaries.

Before considering what happens when I is reversed, it would be worth-
while to draw attention to the effect of the current I shown in Fig. 10.1.2
on the natural modes of vibration. Remember (from Section 9.2.1b) that it is
these modes that characterize the response of the wire to initial conditions.

To find the eigenfrequencies with both ends (x = 0 and x = -1) of the
string fixed, we once again take a lifear combination of waves with wave-
numbers k found from the dispersion equation (10.1.7) for a given value of )w.
At the outset this frequency co remains to be found.

4 = Re (Ce-J& + DejP")ej'w. (10.1.16)

For convenience we have written the two values of k as k = -fl, with fi
defined as

S(10.1.17)
vs

It is clear that to satisfy the boundary condition 4(0, t) = 0, the constants
C and D are related by C = -D, so that (10.1.16) becomes

4 = Re ý sin flxel3, (10.1.18)

where ý includes the remaining arbitrary constant. Then to satisfy the bound-
ary condition 4(-1, t) = 0 it follows from (10.1.18) that

sin fl = 0. (10.1.19)

* See R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic Energy Transmission and
Radiation, Wiley, New York, 1960, pp. 369-378, or S. Ramo, J. R. Whinnery, and T.

Van Duzer, Fields and Waves in Communications and Electronics, Wiley, New York, 1965,
p. 420.
f See T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962, p. 13, or
W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas, M.I.T. Press,

Cambridge, Mass., 1963, p. 13.

Illl~*·-·-·IUI·-·-··~-Y·Y-C---·
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Fig. 10.1.6 A dispersion equation for waves on the wire in Fig. 10.1.2 showing the relation-
ship between the eigenfrequencies w, and the eigenvalues k = nirl.

This eigenvalue equation is the same as that for a wire without the magnetic
force. It has solutions

l1 = nir, n = 1,2, 3,.... (10.1.20)

Now that we have seen a case in which complex wavenumbers have physical
significance it is worthwhile to observe that the solutions to (10.1.19), given
by (10.1.20), are the only solutions and that they constrain f to be real. We
have omitted negative values of n, for the modes represented by these roots
are redundant. Note that n = 0 is not included because it leads to an eigen-
value # = 0; hence from (10.1.18) it leads to no deflection. Solutions to the
eigenvalue equation of this type, which lead to a vanishing eigenfunction, are
referred to as trivial solutions. Now that the eigenvalues have been determined,
(10.1.20), we can solve (10.1.17) for the corresponding eigenfrequencies:

= = - + 2]. (10.1.21)

These are the natural frequencies of the wire in the presence of the magnetic
force. The natural modes can be seen from (10.1.18) to have the same form as
those for the wire with I = 0:

= Re (Aei''" t+ A-e-i'"t)sin nr__ (10.1.22)

Note, however, that the frequencies co, are affected by the current I. Their
relationship to the dispersion equation is shown graphically in Fig. 10.1.6.
The eigenvalues are indicated along the k-axis. (Note that taking negative
values of k results in redundant frequencies.) The corresponding eigen-
frequencies are increased in magnitude by an increase in the current (increase
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in wo). As should be expected, the magnetic force has a tendency to stiffen the
wire, with the largest effect on the longest wavelengths or lowest frequencies
(those least affected by the tension of the wire). The most significant effect
of the current is on the lowest eigenfrequency wl, which approaches w. more
rapidly than the other frequencies as the current is increased. Note that
because of the current the eigenfrequencies are no longer harmonically
related.

Because the natural frequencies are purely real, they appear as resonances
of the driven response. This was discussed in detail in Section 9.2.1a for the
wire without magnetic coupling. It could have been discerned earlier in this
section by observing the possibility of a finite response from (10.1.13), even
as Cd - 0, if the denominator also approaches zero. This requires that

sin 1k,l1= 0, (10.1.23)
which is the same condition as that in (10.1.19) except that 1k,i is a function
of co (the driving frequency) rather than an unspecified co. Hence, if the
frequency wois tuned to one of the eigenfrequencies, there is a resonance in
the response. The resonance frequencies of the wire are shifted upward by
increasing the current I (or increasing the cutoff frequency o,).

Example 10.1.1. Magnetic fields are sometimes used to contain and orient highly
conducting media; for example, in devices proposed to achieve thermonuclear fusion the
magnetic field is used to make a "bottle" for the plasma. For many purposes this plasma,
or highly ionized gas, can be considered as a perfectly conducting fluid. The example
discussed here illustrates the continuum dynamics of a medium which, like the plasma, is
assumed to have an infinite conductivity.

A perfectly conducting membrane forms the deformable part of the system shown in
Fig. 10.1.7. When the membrane is undeformed, it lies in the x-y plane and is immersed in a
uniform constant magnetic field H = Hoix.We consider deformations of the membrane

Condu
wea

/--U

Fig. 10.1.7 A perfectly conducting membrane is bounded from above and below by fixed
conducting walls and is immersed in an initially uniform magnetic field HO.

10.1.2
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Perfectly conducting
ne

• H , Contour(a)

Hb d.ý

_Kb

"- 0 H0

Fig. 10.1.8 Cross-sectional view of the apparatus shown in Fig. 10.1.7. The current loops
(a) and (b), with the imposed magnetic field Ho, couple the membrane to the upper and
lower conducting walls.

$(x, t) that do not depend on y; hence the membrane has the general appearance shown in
Fig. 10.1.7.

The membrane has a width w with its edges making electrical contact with the walls of a
rectangular conducting conduit. Thus the membrane and the upper wall form a conducting
loop [contour (a) shown in Fig. 10.1.8]. Similarly, the lower wall and membrane form the
conducting loop (b). In the limit in which the conductivity of the walls (a,) is infinite the
magnetic flux linked by each of these circuits must remain constant. Hence an upward
deflection is accompanied by an increase in the field intensity above the membrane and a
decrease in the field intensity below it. The conservation of flux is realized because of the
flow of surface currents Ka and Kb as shown. This type of flux conservation dynamics is
familiar from Section 5.1.3, in which it was encountered in the context of lumped-parameter
dynamics.

The induced currents shown in Fig. 10.1.8 are responsible for creating a magnetic force
on the membrane that tends to restore it to the plane of zero deflection. Therefore we can
expect from the outset to obtain an equation of motion similar to (10.1.6).

The equation of motion for the membrane is

a2 _ a2$
lm -i = S -• + Ts, (a)

where T_ is the force per unit area acting in the z-direction (see Table 9.2). The magnetic
field intensity above the membrane (a) and below the membrane (b) can be written as

Ha = [Ho + ha(x, t)]i,, (b)
Hb = [Ho + hb(x, t)]i,, (c)

where ha and hb represent perturbations from the equilibrium magnetic field intensity caused
by deflections of the membrane. We assume that the transverse displacements (xz, t) vary
slowly enough with x that at each cross section of the system shown in Fig. 10.1.7 the
magnetic field is essentially x-directed and is independent of y and z.

Amp6re's law requires that the jump in magnetic field intensity on the upper and lower
plates be equal to their respective surface currents. Hence

ha = K a, (d)
hb = -Kb,

I
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and we can find the perturbation field intensities by writing circuit equations for the
currents Ka and KV. The integral law of induction used in conjunction with the contour (a)
of Fig. 10.1.8 is

fE' dl= - f 0H. n da, (f)

where the time derivative is written as a partial because the flux is a function of the longi-
tudinal position x of the cross-sectional surface of integration Sa enclosed by the contour
C.. To evaluate the integral on the left note that E' is zero both in the perfectly conducting
membrane and in the perfectly conducting end walls. In the upper plate the surface current
density and electric field are related by Ohm's law, which takes the form

Ka = aE (g)

because the upper wall is fixed. Equation f then becomes

wKa a
- t [w(d - 4) •,(Ho + ha)]. (h)

o, at
Similar arguments, used with contour (b) in Fig. 10.1.8, produce the electrical equation

wKb a
- = - [w(d + ý) p,(Ho + hl)]. (i)

We confine our attention to small displacements of the membrane so that it is appropriate
to linearize these last two equations, which in view of (d) and (e) become

he a

h6 8- = (odh -+oHo$). (k)
as athb, a +

These expressions are the required electrical equations of motion that relate the field
intensities above and below the membrane to the displacement $. The remaining equation
is (a), with T, written in terms of ha and hb.

To find T,, the surface force density is related to the Maxwell stress T*, by (8.4.2)

Tz = (Tzma 
-

Tzm)nn, (I)

where n is the vector normal to the membrane surface. Because n _ i., the summation on
m has only one contribution, m = z, and (1)reduces to

Tz = a 
-1 0 [(Ha)S - (Hb)S]. (m)

Now, if we introduce (b) and (c), this expression can be linearized to obtain

T. = -- p~oH(ha - ha). (n)

* Alternatively, the surface force density can be derived by using the energy method of
Chapter 3 and viewiftg each section of the membrane as forming a pair of parallel plate
inductors with the siue walls. If this is done, remember that in Addition to the two terminal
pairs for these inductors there is a third terminal pair, constrained to constant current, for
the magnet that makes H0.

10.1.2
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The effect of finite conductivity in the walls has been included up to this point because it
offers the possibility of illustrating at least two important dynamical effects. These are
discussed when this example is continued in Sections 10.1.4 and 10.2.4. For now, we
consider the limit in which a, is large enough that the fluxes linked by contours (a) and (b)
remain essentially constant. Because the quantities in parentheses in (j) and (k) are the
flux perturbations, they must therefore be zero and it follows that

hb = Ho_
d

hb -Ho:
d

If we combine these expressions with (n) and (a), an equation of motion results:

where

a
2 Oa2$
- = v S2X--i-

SVS = o

cue_2 21doH
amd

This expression has the same form as (10.1.6), and we can conclude that in the limit in
which a, -- oo the membrane of Fig. 10.1.7 will have the same dynamical behavior found
for the wire shown in Fig. 10.1.5.

10.1.3 Absolute or Nonconvective Instability

When the current is reversed in the experiment of Fig. 10.1.2, the wire
dynamics are found to be altogether different from those described in the
preceding section. As the current I (shown in Fig. 10.1.9) is raised, there is a
threshold beyond which the wire bows outward. Under this condition, no
matter how carefully the wire is placed on the center line between the coils, it
bows outward when it is released.

Fig. 10.1.9 Wire carrying current I in a magnetic field that is zero along the axis E = 0.
Current is reversed from the situation shown in Fig. 10.1.2.
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k

Fig. 10.1.10 Plot of the dispersion equation for physical situation shown in Fig. 10.1.2 with
the current reversed, as in Fig. 10.1.9. Complex values of w are shown for real values of k.

This might be expected. Reversing the current gives rise to a magnetic force,
as in (10.1.5) with I -- -I, that tends to carry the wire in the same direction
as the displacement. Hence it tends to produce an instability that is the con-
tinuum analogue of the static instability of lumped-parameter systems de-
scribed in Section 5.1.2a. A transverse deflection, shown in Fig. 10.1.9, leads
to a magnetic force that tends to make the deflection even larger.

The equation of motion is again (10.1.1), but now S. is

S, = Ibý (10.1.24)

and the equation governing deflections of the wire is

S- + kc2 , (10.1.25)
v2 at2 ax2

where
k2 -Ib

f

Again, the dispersion equation is found by substituting (10.0.1) into this
equation of motion to obtain

W2 = v3,2(k 2 - kc2). (10.1.26)

The asymptotes of this expression, plotted in the w-k plane, are again
straight lines with slopes ±v,.The two branches of the plot, however, now
pass through the k-axis, as can be seen by setting w = 0 and solving (10.1.26)
to obtain k = +k,. Hence the real values of o, as a function of real values of
k, appear as shown by the solid lines in Fig. 10.1.10. For each value of wthere
is a corresponding pair of real wavenumbers k. This is evident either from
Fig. 10.1.10 or from (10.1.26) solved for k. By contrast only real values of k
with a magnitude greater than k, lead to real values of o.

10.1.3
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Note that the roles of w and k are the reverse of what they were in the
preceding section. Now, it is appropriate to plot complex values of wofor real
values of k, and this is the significance of the broken line in Fig. 10.1.10. In
the range of wavenumbers -k, < k < k, the frequency co is purely imaginary.
Substitution of ow= jo)i in (10.1.26) shows that the relation between wi and k
is an ellipse (Fig. 10.1.10).

Consider first the sinusoidal steady-state vibrations with the same boundary
conditions (10.1.8) and (10.1.9) used in the preceding section. Then the same
steps used to compute (10.1.13) give

sin pxs= -~a sin coat, (10.1.27)
sin pl

where

L= + k)ý . (10.1.28)

This solution to (10.1.25) is simply a linear combination of waves for which
the two wavenumbers k = 4-/ are found by solving the dispersion equation
(10.1.26) with o) = co,. These solutions are shown graphically in Fig. 10.1.10.

The sinusoidal steady-state vibrations have the same general spatial
appearance as the wire with no magnetic force. The frequency response, how-
ever, has been altered by the current I. As in Section 10.1.2, there are reso-
nances in this response at the natural frequencies. They occur when the
denominator of (10.1.27) goes to zero or when Il= nwr, n = 1,2, 3,.... It
follows from (10.1.28) that the resonance frequencies are

Co = -, - , n = 1, 2, 3 ..... (10.1.29)

Remember that k, can be increased by increasing the current I. The equa-
tion shows that the response frequencies are reduced by the interaction with
the magnetic field. This is just the opposite of the effect found in the preceding
section, in which these resonance frequencies were increased by the magnetic
interaction.

As the current I is increased, the point is reached at which the lowest
resonance frequency is reduced to zero. From (10.1.29) this critical condition
occurs when

k, - (10.1.30)

For larger values of k, the lowest resonance frequency is no longer real.
Because this resonance results when the driving frequency is tuned to the
natural frequency, we suspect that the lowest natural frequency is complex
after k, exceeds 7/1l. Note that the driven response given by (10.1.27) is still
perfectly valid even if kc is larger than the critical value given by (10.1.30).
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It is of crucial importance to recognize that once k, exceeds 7r/1 the sinu-
soidal steady-state response is of little significance. The lowest natural mode of
the system is unstable and the transient solution, initiated by the initial con-
ditions, eventually dominates the driven response. To see this we now consider
the natural modes of the wire with both ends fixed.

The steps used in Section 10.1.2 in going from (10.1.18) to (10.1.22) are
equally valid here. Hence the eigenmodes are given by (10.1.22). Now,
however, the eigenfrequencies are given by the revised dispersion equation
(10.1.26) with k2 = (nir/l)2 .

() = = = [(v )- -- kcj . (10.1.31)

These eigenfrequencies are shown in Fig. 10.1.11, in which a graphical repre-
sentation of the dispersion equation shows how the discrete values of k
allowed by the fixed ends of the spring are related to the w,'s. From the figure
it can readily be visualized how the frequencies of each mode shift inward as
k,(I) is increased. As k, is increased beyond nrn/1, the frequencies of the nth
mode move onto the ellipse and take the form

w = j IW(i ,

as can be seen from (10.1.31). The negative imaginary eigenfrequency gives
rise to an eigenmode (10.1.22) that has an exponentially increasing amplitude.

In Section 9.2.1b we saw that the eigenmodes were orthogonal. Physically
this meant that if initial conditions were such that only one of the modes was
excited that mode would persist indefinitely without involving the others.
[See Example (9.2.1) for a particular illustration of this point.] Suppose that

Fig. 10.1.11 The dispersion equation for the system of Fig. 10.1.2 with current as shown in
Fig. 10.1.9. Complex values of o are shown for real values of k. The allowed values of k
give rise to the eigenfrequencies as shown.

10.1.3
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the A,'s in (10.1.22) were adjusted so that just the lowest mode was initiated.
Then, with k, < 'r/l, the vibrations of the wire would have the oscillatory
dependence on x and t shown in Fig. 10.1.12a. With ko > r/fl, wire displace-
ments would appear as the instability shown in Fig. 10.1.12b. This is an ex-
ample of an absolute or nonconvective instability because, unlike instabilities
that we shall study in Section 10.2, it involves deflections that become un-
bounded as time increases at a fixed point in space; That is, if the wire
extended to x = ± oo and a pulse were initiated at x = 0, the deflection at
x = 0 would become unbounded with time.

The "unboundedness" of the unstable deflections is, ofcourse, a prediction
of the mathematical model that sooner or later is not accurate because of
nonlinear effects that were neglected in both the derivation of the equation of
motion for the wire and in writing S, as in (10.1.24). This same limitation was
involved in the lumped-parameter, linear stability theory of Section 5.1.2.

The dynamics that determine when the deflections will become large vary
from the mundane to the spectacular and from the disasterous to the useful.
In the system of Fig. 10.1.9 the deflections may increase until the wire en-
counters one of the magnet coils or they may simply reach some saturation

I~

Fig. 10.1.12 Space-time dependence of lowest eigenmode: (a) ke < Ir/l,stable; (b)
k e > 7r/1, unstable.
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amplitude dictated by the large amplitude variation of the magnetic field.
In Section 10.4.3 we shall see a grossly nonlinear consequence of absolute
instability-the destruction of the system. On the other hand, as discussed
later, instabilities of some types form the basis for making oscillators.

The example of instability presented in this section has the virtue of being
extremely simple to understand mathematically, by comparison with in-
stabilities often found in continuous media.* Nevertheless, there are practical
situations in which this model has engineering significance. Example 10.1.2
considers how instability, predicted by this simple model, imposes a limitation
on the levitation of continuous media with an electric field.

Absolute instability is of great interest to those concerned with fluid
dynamics and the dynamics of elastic media. A classic example in the first
category, which is closely related to the case considered in this section, is
shown in Fig. 10.1.13. In Fig. 10.1.13a a heavy fluid (which is dark) is sup-
ported on a lighter fluid (which is clear) by hydrostatic pressure. In this initial
equilibrium state each element of the fluid is in force equilibrium. With the
heavy fluid on top, however, the equilibrium is unstable in the same sense
that the wire of Fig. 10.1.9 was unstable. The only reason that the heavy fluid
holds the position shown in Fig. 10.1.13a is that it is subject to an electric
field, which induces polarization forces (discussed in Section 8.5) that stabilize
the equilibrium. When this electric field is removed, the equilibrium becomes
unstable, as shown in Figs. 10.1.13b-e, and the heavier fluid falls to the bottom
of the tank. This is called a Rayleigh-Taylort instability, and although the
three-dimensional fluid motions are more complicated mathematically than
those of the wire considered here the properties of these instabilities are in
many ways similar. Both are absolute instabilities, and both instabilities have
small amplitude motions characterized by a purely exponential growth with
time.

Rayleigh-Taylor types of instability are found in a variety of situations.
Many found in the hydromagnetic equilibria of fusion machines have charac-
teristics similar to the heavy fluid on top of the light fluid.$ This connection is
explored further in Section 10.4.3. Figure 10.1.13 actually illustrates an
electrohydrodynamic situation in which an electric field prevents instability
(although we must leave the details of this situation for further reading§).

* The downward shift of the natural frequencies and instability of the lowest mode are
illustrated in the film "Complex Waves I" produced by the Education Development
Center, Newton, Mass., for the National Committee on Electrical Engineering Films.
t S. Chandrasekhar, Hydrodynamic and HydromagneticStability, Oxford, 1961, p. 428.
1 D. J. Rose and M. Clark, Jr., Plasmas and ControlledFusion, M.I.T. Press and Wiley,
New York, 1961, p. 258.
§ J. R. Melcher and M. Hurwitz, "Gradient Stabilization of Electrohydrodynamically
Oriented Liquids," J. Spacecraft Rockets, 4, No. 7, 864-881 (July 1967).

10.1.3
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Fig. 10.1.13 (a) A heavy (dark) liquid is supported above a light (clear) liquid by hydro-
static pressure; (b- e) show growth of Rayleigh-Taylor instability resulting after stabilizing
electric polarization forces in (a) are removed. (Photograph courtesy of Dynatech Corp.,
Cambridge, Mass.) This phenomenon can be seen in the film, "Complex Waves II,"
available from Education Development Center, Inc., Newton, Mass.
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Electric fields most often produce instabilities. The literature ofplasma dynam-
ics abounds in illustrations of absolute instabilities.*

Example 10.1.2. Electric and magnetic fields are often used to separate, levitate, or
confine continuous media. A simple example of levitation is given in Fig. 10.1.14. An
electrically conducting elastic film (mnembrane), with a mass per unit area am, is stretched
horizontally with equilibrium tension S between two rigid supports. With no other forces
acting, the gravitational force makes the membrane sag in the middle. We propose to
remove the sag without making physical contact with the membrane by placing a parallel
conducting electrode, as shown in Fig. 10.1.14, and applying a potential difference between
the membrane and the fixed plate. The membrane can be placed in a perfectly horizontal
static equilibrium by providing an electrostatic attraction force per unit area between the
plate and the membrane just equal to the gravitational force per unit area ag.An important
question, however, is this: Is the equilibrium stable? That is, can we expect that small
transverse deflections of the surface due to noise will not become continuously larger? The
electromechanical coupling occurs everywhere on the surface; hence to answer this
question we must analyze a distributed surface-coupled problem.

It is assumed at the outset that the transverse displacements of the membrane, which are
critical, do not depend on the y-coordinate. This is justified if the y-dimension of the
membrane is small compared with 1.In an actual situation this would mean that the tension
in the y-direction of the membrane shown in Fig. 10.1.14 would be considerably less than
the tension S in the x-direction, a fact that would make a one-dimensional membrane
equation even more appropriate.

Because there is a gravitational force per unit area agacting in the -z-direction, the
equation of motion (9.2.3a) becomes

a2ý a2 t
S= S-= - o&g + T2, (a)

where Tze is the transverse force per unit area due to the electric field.
The electric field in the region between the plate and membrane is in general a function of

both x and z. We restrict our interest here, however, to the "long-wave limit" (see Example
6.2.4) in which the slope 4/2ax is small enough that the electric field is essentially z-directed.
Hence we write the electric field intensity as

V
E iz. (b)

Fig. 10.1.14 Conducting elastic membrane held horizontal in a gravitational field by an
electrostatic force.

* J. G. Linhart, PlasmaPhysics, North-Holland, Amsterdam, 1960, p. 101.
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We have used the assumption that the membrane and the fixed plate are equipotentials;
that is, the conductivities are high enough to allow charges to relax from one position to
another on the conductors in a time that is short compared with a characteristic time of the
mechanical motions (e.g., period of oscillation of the membrane or, as we shall see, time
constant for instability). This is the idealization of the zero electric Reynolds number
discussed in Section 7.2.

The force per unit area in the z-direction on a surface with the normal vector n is in
general [from (8.4.2)1

TZ = (Tnma - Tmb)n,. (c)

Because nm n. 1 and there is no electric field below the membrane, this reduces to

Tze = T(a) .  (d)

Recall from (8.3.10) that because E, F 0 and E, P 0 the component of the stress tensor
T,; is

T., = IOEE~', (e)

and it follows from (b), (d), and (e) that

Te = (o . (f)

Expansion of this surface force density in a Taylor series about the equilibrium position
-= 0 and retention of only linear terms in displacement yield

2d42 ci b (gd

This result is now substituted into (a) to obtain the differential equation of motion

824 a2 °V2 40 V0o (h)oo- = S -- ag+ + + . (h)

It is desired that the voltage Vbe adjusted so that in static equilibrium the membrane has
no sag (4 = 0). In this case, (h) reduces to

EoV 2
-aCr + f= 0, (i)

which simply states that the net electrical force upward (the upward attraction of the upper
plate) must balance the downward force of gravity.

Subtraction of the equilibrium equation (i) from (h) gives an expression that must be
satisfied by the perturbation deflections

1 a2w a8ý

v'
2 

at
2 

--
2 + k 2  

(j)
where

V8= () (k)

__C~___;_III_·l~____I I_·· ·
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This equation has the same form as (10.1.25). We can immediately conclude that because
the boundary conditions are also the same as those considered in writing (10.1.30) the
equilibrium is stable if

V2T< (m)

This institutes an upper bound on the voltage V consistent with stability. If we recognize
that a requirement is also imposed on the voltage by the levitation condition (i), it follows
that a largest mass-per-unit-area a,. can be levitated by an apparatus with given dimensions
and membrane tension S. This follows by eliminating V2from (m) and (i):

m< -t "(n)

It is a limitation of this kind that absolute instability often imposes on practical systems.
In an actual design a further restriction on allowable voltages arises because the material

between the plate and membrane in Fig. 10.1.14 will be able to withstand only a finite
electric field intensity; for example, if this region is filled with air at atmospheric pressure,
the electric field intensity cannot exceed about 3 x 106 V/m.*

10.1.4 Waves with Damping, Diffusion Waves

Any real system is affected to some extent by energy dissipative effects,
whether they take the form of mechanical friction or are caused by resistive
heating. This fact alone would justify at least brief attention to the dynamics
of a continuum influenced by losses. Even more important, however, are the
physical situations in which the effect of energy dissipation is essential. This
was seen in Chapter 7, in which magnetic diffusion and charge relaxation
were governed by loss-dominated continuum equations. The discussion
presented in this section adds further physical significance to the diffusion
equation, which in Chapter 7 represented the dynamics of the magnetic field
in a conducting material and in this section the dynamics of a string in a
viscous fluid. One of our reasons for introducing this topic here becomes even
more evident in Section 10.2.4, in which the simple ideas introduced are
extended to show how losses, in conjunction with material convection, can

give rise to a class of instabilities. These "resistive wall" instabilities assume
importance in a variety of situations.

For purposes of illustration suppose that the wire is immersed in a viscous
liquid. Then transverse deflections ý produce a viscous drag on each section
of the wire which is analogous in its effect to the viscous damper (see Section
2.2.1b) of lumped-parameter systems. A small section of the wire, shown in
Fig. 10.1.15, experiences a (retarding) force per unit length to oppose the

* A. E. Knowlton, StandardHandbookfor ElectricalEngineers, McGraw-Hill, 9th ed.,
1957, p. 416.
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Fig. 10.1.15 A viscous drag per unit length acts to retard the motion of each element of
the wire.

motion. If the velocity is low enough (or the viscosity is high enough*), this
force is simply proportional to the transverse velocity; that is,

S, = -B (10.1.32)
at

where B is a damping coefficient per unit length.
With this type of force acting on the string, the equation of motion (10.1.1)

becomes
a24 2 a28 a8

- v -y (10.1.33)at= a-- at
where, as before,

v,= (10.1.34)

and a normalized "damping frequency" has been defined as

v - . (10.1.35)

Now substitution of the standard form of solution (10.0.1) into (10.1.33)
gives the dispersion equation

2 = v Sk + jVlO. (10.1.36)

This equation, like those considered in the preceding sections, is a simple
quadratic either for w or for k. Note that by contrast with the preceding cases,
which did not involve dissipation, the dispersion equation now has a complex
coefficient. Although the problem is formally no more complicated than it
was before, the complex coefficient is responsible for making the algebra more
involved.

First of all, consider the driven response to a sinusoidal steady-state excita-
tion with the frequency o = wo. Then it is appropriate to solve the dispersion

* The drag on a cylinder in a liquid obeys this law, provided the Reynolds number is small
enough. See H. Rouse, ElementaryMechanicsof Fluids, Wiley, New York, 1946, p. 247.
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equation (10.1.36) for k, given that the frequency is wd:

k = -- Vd2 - JV( (10.1.37)
v1,

The radical makes it convenient to recognize that this expression has the form

k = +( k,[ - j Ikil ). (10.1.38)

The graphical construction in the complex plane (Fig. 10.1.16) shows how
Ikrl and Ikil are related to the driving frequency wC.The vectors provide a
convenient way to picture the result of taking the square root of (10.1.37).

In view of the possible wavenumbers expressed by (10.1.38), the driven
response is made up of two waves with amplitudes A+ and A- determined by
the boundary conditions.

&= Re [A+ei- j k,l - jilk| )x + A-eij(,rl-Jkil)x]ej a.. (10.1.39)

Remember that the real part of the wavenumber contains information about
the periodicity and the phase velocity of the wave. Hence the first term in
(10.1.39) represents a wave with the wavelength (measured between points of
zero phase)

2rr
2 = (10.1.40)

and a phase velocity (again for points of zero phase) of

v, = - . (10.1.41)
1k,|

These points of zero phase propagate in the positive x-direction. From the
form of (10.1.39) it is also clear that this wave decays in the positive x-direction
at a rate determined by IkJ. The A- wave has a similar physical significance,

-IkiI

Fig. 10.1.16 Graphical solution of (10.1.37) to show complex nature of k.
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k

Fig. 10.1.17 Dispersion equation (10.1.37) for a string immersed in a viscous liquid,
showing complex values of k for real values of w.

with points of zero phase propagating in the -x-direction and an amplitude
that decays also in the -x-direction.

What we have found is not too surprising. The effect of the damping on the
driven waves is to produce a spatial decay in the direction of propagation.
Figure 10.1.17 shows the w-k plot predicted by (10.1.37). Here we are
considering the driven response and plot complex values of k for real values
of co. Note that the positive real part of k (corresponding to a given frequency
c) = 0o) goes with a negative imaginary part of k on this diagram. As the
driving frequency is raised, the real parts of k approach the same values they
would have in the absence of damping whereas the imaginary parts (which
reflect the spatial rate of decay) reach the asymptotic value Ikil = v/2v,.

The terms in (10.1.36) have the same physical significance as the corre-
sponding terms in (10.1.33); that is, the wo2 on the left represents the effects of
inertia, whereas v,2k2 and jvw, respectively, symbolize effects of the tension
and viscous drag. If the damping is sufficiently large that

>> 0)d, (10.1.42)

the effect of damping dominates that of the inertia and the 0)2 term in (10.1.36)
can be ignored. (This is similar to the class of dynamics discussed in Section
5.2.2 in the context of lumped parameters.) The resulting dispersion equation
takes the form

k 2 = - JoV (10.1.43)
Vs

2
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In this simple form the radical found in solving for k [as in (10.1.37)] can be
taken to obtain

k - = (1 -j). (10.1.44)

This simplified dispersion equation is familiar from Section 7.1.3a [see
(7.1.70)], where it was found in discussing the sinusoidal steady-state behavior
of a magnetic field in a conducting medium. Instead of the magnetic skin

depth 6, we now have 6 --* 1 2V,2(odv. The mathematical analogy between the
viscous dominated spring and the magnetic diffusion could have been seen at
the outset by comparing the one-dimensional form of (7.1.11) with (10.1.33),
with the inertia term omitted. Both systems are represented by the diffusion
equation.*

The value in recognizing the analogy between the deflection of the spring
as it "oozes" through the viscous liquid and the magnetic diffusion through a
conducting material is not confined to the mathematics. We can obtain a good
physical "feel" for the diffusion process as it occurs in a diversity of situations
by keeping in mind that the dynamics are similar to those found in the experi-
ment shown in Fig. 10.1.18. Here a tightly wound helical spring (which is
equivalent to a wire or string with a small tension f) is fixed at one end and
driven up and down in a sinusoidal fashion at the other. The spring is immersed
in glycerin. If we were to produce this excitation by hand, we would be most
aware of a viscous retarding force. This is in contrast to the force required to
excite the evanescent waves of Section 10.1.2, which was of the same nature as
that required to compress a spring. (The comparison is worthy of note, for
in both cases we are concerned with waves that decay spatially away from the
point of excitation.)

The dispersion relation for the diffusion wave is characterized by equal real
and imaginary parts of k for real values of co.This is the region near the origin
in Fig. 10.1.17, as is evident either from the (A-k plot or from the condition
of (10.1.42).

In the preceding sections reference has been made to the effect of damping
on the natural frequencies. This effect was clearly necessary for an accurate
picture of the transient dynamics over many oscillations of the string. With
the ends of the string fixed (as in the last two sections), the natural modes are
found by again recognizing that solutions for k have the form k = -#f (where
co is now unknown and (10.1.36) is solved for k) and writing solutions in the
form of (10.1.16). The same arguments used then, lead to the conclusion that

- , n = 1, 2, 3,..., (10.1.45)
1

* Reference to other systems represented by this equation was made in the footnote to
(7.1.11).



(0)

Fig. 10.1.18 A spring under tension is driven sinusoidally at the left end and fixed at the
right end. It is immersed in glycerine which is sufficiently viscous that the effect of damping
exceeds that of inertia. Hence the resulting motions which are shown in sequence over
about one half cycle exemplify diffusion waves (or skin effect waves) in the sinusoidal steady
state. (From four-minute film "Diffusion Waves" made for M.I.T. by Education Develop-
ment Center, Inc., Newton, Mass.)

Courtesy of Education Development Center, Inc.  Used with permission.
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and the eigenfrequencies follow by solving the dispersion equation (10.1.36)
with k 2 = (n7r/l)2 .

.ý= ± v± f2 - (2

This expression has the form

o = -+- ,,
2

and the nth eigenmode can be written as

= [A+e'n t + Ae-n"']e-(v2)t sin nZX
n n I

(10.1.46)

(10.1.47)

(10.1.48)

Because the eigenvalues P correspond to discrete values of k which are real,
the eigenfrequencies can be pictured graphically on an aw-k plot to show
complex values of w for real values of k. This plot has the appearance of
Fig. 10.1.19.

Fig. 10.1.19 Dispersion equation for string in a viscous liquid showing complex values of
o for real values of k. The lowest pairs of eigenfrequencies for a string fixed at each end are
shown.
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Note that for a given mode n both eigenfrequencies are imaginary (and
represent pure damping) if the second (viscous drag) term under the radical
in (10.1.46) exceeds the first (tension) term; for example, in Fig. 10.1.19 the
n = 1mode is characterized by two exponentially decaying deflections where-
as the n = 2 mode takes the form of two oscillating deflections with amplitudes
with a temporally decaying envelope. In this case we say that the lowest mode
is overdamped and the others are underdamped.

Example 10.1.3. Of course, the damping can occur because of electrical as well as
mechanical dissipation. The system introduced in Example 10.1.1 serves as an illustration of
this fact. Suppose that the conducting top and bottom walls in Fig. 10.1.7 are so highly
resistive that the voltage induced by the motion of the membrane is entirely absorbed by the
resistance of the plates. This is the opposite extreme to the case considered in Example
10.1.1 in which this voltage was absorbed by the self-inductance of the current loops (a) and
(b) shown in Fig. 10.1.8. (These extremes were discussed in the context of lumped parameters
in Section 5.1.3.) Then, in writing the electrical loop equations (j) and (k) of Example
10.1.1, we can make the approximation that

>> /dhI' , (a)

> aodhb , (b)

to obtain
ha = oHoat ' (c)

at

h' = -- s aH0 (d)

The equation of motion is obtained by combining (a) and (n) in Example 10.1.1 with the
last two equations: a2 2 a2 a(

where 1/2

vS = 
(f)

2a,(/toH0)
2

V - (g)

Hence in the limit in which the upper and lower walls in Fig. 10.1.7 are very lossy, the effect
of the magnetic field is to damp the transverse motions ofthe perfectly conducting membrane.
It is clear from (e) that the discussion of this section applies equally well to the resistively
loaded membrane in which the damping is of electrical origin.

This example is continued in Section 10.2.4, in which the effects of electrical damping
are exhibited in a considerably less obvious way than found here.

10.2 WAVES AND INSTABILITIES IN THE PRESENCE
OF MATERIAL MOTION

We are concerned in this chapter with continuous media and have confined
our interest so far to cases in which the continuum is initially at rest or in
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static equilibrium. Gross motion of a medium can have a profound effect on
the dynamics found, for example, when attempts are made to carry on a con-
versation in a high wind. In this section we use strings and membranes as
models for introducing concepts related to the dynamics of media initially in
a state of uniform motion. Again, our remarks are related to particular
physical situations chosen for their simplicity, but with implications for a wide
range of physical situations; for example, the string might be replaced by a
beam of electrons in vacuum, by a stream of holes in a semiconductor, or by
a streaming gas or plasma.

The systems to be considered now have the same basic physical nature as
those in Section 10.1. The mechanical continuum is a string or a membrane
undergoing one-dimensional transverse displacements ý(x, t). Now we intro-
duce a new ingredient and specify that the continuum is moving in the longi-
tudinal (x) direction with an equilibrium velocity U. Although the remarks
that follow use the string as an example, it should be clear that they also apply
directly to the one-dimensional motion of a membrane.

Our interest here is in exciting the moving string at a fixed point and in
describing the dynamical behavior as viewed from a fixed frame. Con-
sequently, the equation of motion developed in Section 9.2 is not adequate
because it does not account for the equilibrium velocity (convection) of the
continuum. It does, however, give a proper description of the string viewed
from a reference frame moving in the x-direction with a velocity U because in
that frame the string has no velocity in the x-direction. We denote variables
(both independent and dependent) measured in this moving frame by primes
and write (10.1.1) for string deflections ý' in the moving frame as

a2• ' a82m -T=f + S'. (10.2.1)
at"2 ax21

We are dealing with velocities much lower than the velocity of light; con-
sequently we use Fig. 10.2.1 to relate the coordinates and time in the two
frames by the Galilean transformation*:

x = x' + Ut', (10.2.2)

z = z' (10.2.3)

t = t'. (10.2.4)

It follows from (10.2.3) that ý = ý' and because the moving frame is not
accelerating, we can also say that S, = S,. Hence to write (10.2.1) in the fixed

* This discussion represents a review of ideas developed in Section 6.1, now applied to
transforming mechanical rather than electrical equations of motion. Hence once again we
encounter the substantial or convective derivative.
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z'

Fig. 10.2.1 The fixed coordinate system x, y, z or the moving coordinate system x', y', z'
can be used to define a given position along the equilibrium axis of the string. Because the
moving coordinate system has the same velocity U in the x-direction as the string, the
string appears to move only in the z'-direction when viewed from the primed frame.

frame we need only compute the derivatives in terms of (x, t); that is

at + U - (10.2.5)at' at at' ax at' at ax

Repeating this procedure, we have

a2$ a $++a a a u (10.2.6)
at'2 - \at x+U ax at a)

The space derivative is found in the same way to be

2 a(10.2.7)
aX,2 - ax,2

hence (10.2.1) becomes

S+U= - + S,, (10.2.8)

where the quantity in brackets on the left is recognized as the one-dimen-
sional form of the substantial or convective derivative operating twice on e.*
Remember from Section 6.1 (6.1.19) that the substantial or convective
derivative is the time rate of change viewed from a frame moving with the
velocity U. Our derivation of (10.2.8) makes this interpretation apparent
once again. Here the convective derivative provides the means of expressing
the equation of motion in the fixed frame.

at a 2 a2$ a2- 22•
* From the derivation + U- - + 2U + U

8t 8x/ at' 8x at + %
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10.2.1 Fast and Slow Waves

Before introducing further complications, it is worthwhile to consider the
nature of waves that propagate on a convecting string with no electro-
mechanical coupling. Thus we set S, = 0 and (10.2.8) becomes

a + U = v, - (10.2.9)
it 5 ax2

where once again v, = If--m.

10.2.1a Traveling Waves

Now, if U = 0, the problem is mathematically identical to the one dis-
cussed in Section 9.1.1 in which we also found that the wave equation was
pertinent and that deflections took the form of waves (9.1.14). We expect that
in the moving frame shown in Fig. 10.2.1 solutions will have this same form
and that we can now write solutions as

e = +(a) + _(#), (10.2.10)
where

S= x' - vt', C+ , (10.2.11)

fi = X' + v,t', C-. (10.2.12)

The parameters a and # can be written in terms of the fixed frame variables
(x, t) by using the transformation equations (10.2.2) to (10.2.4):

a = x - (v, + U)t, C+, (10.2.13)

# = Z + (v, - U)t, C-, (10.2.14)

and direct substitution into (10.2.9) shows that (10.2.10) is indeed a solution.
Equations 10.2.13 and 10.2.14 for a and # are recognized as the charac-

teristics discussed in Section 9.1.1a but altered by the convection. The convec-
tion increases the velocity of waves propagating in the positive x-direction
along C+ characteristic lines and decreases the velocity of waves propagating
in the negative x-direction along C- characteristics.

The characteristic lines that originate at x = 0 when t = 0 (a and # equal
to zero in (10.2.13) and (10.2.14)) are shown in Fig. 10.2.2. In (a)of this figure
waves propagate relative to the string with a velocity exceeding U(v, = 2U).
Note that the slopes of the characteristics are the velocities of propagation for
the forward and backward waves ý+ and L_. Hence the wave propagating
in the +x-direction does so more rapidly than the wave propagating against
the convection in the -x-direction.

By contrast Fig. 10.2.2b shows the case in which the convection makes both
characteristics point downstream (+x-direction) as time increases. Hence a
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(a) (b)

Fig. 10.2.2 Characteristic lines in the space-time plane along which a disturbance at
x = 0 when t = 0 will propagate: (a) when v, = 2U; (b) when v, = U/2.

disturbance at x = 0 when t = 0 will result in two waves that propagate in
the +x-direction. There is no effect from such a distrubance on that part
of the string in which x < 0. As we shall find in Chapter 13, sound waves
in a gas have a behavior analogous to that of the elastic waves considered
here. In the language of gas dynamics we say that the two cases of Fig. 10.2.2
are "subsonic" and "supersonic," respectively.

An example serves to clarify further the effect of material convection on
waves.

Example 10.2.1. In Example 9.1.2 of Section 9.1.1a we studied the behavior of an
initially static pulse propagating on an elastic rod. A mathematically similar problem is now
considered in which the string is given an initial displacement and velocity and we inquire
about the resulting motions; that is, we are given

$(x, 0) = $~o), (a)

S(, 0) = o(). (b)

We can evaluate + and L_ by using the initial conditions. This is done by taking the
derivative of (10.2.10) with respect to x and using (a). (Here we use the fact that D/laz =
al/ax = 1.)

d4+ d$_ d(o-+ 7# = (c)do dfi dz

Similarly, the use of the time derivative of (10.2.10) with (b) gives

d. d .

-(V, + U)--+ + (V, - U) -= to().
dr dap

a,·U·II ap1111

10.2.1
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Simultaneous solution of (c) and (d) yields

d5• v, - U d~d 1 .2O(x), (e)
dot 2v, dx 2v,

d _ 
+ U\ d 1 (f)

dfl 2v, dx 2v,

Remember that in (e) and (f) x is the position along the string when t = 0. To find the
solution at a general point C in space and time, as shown in Fig. 10.2.3, we use (e) with
x evaluated at A, where x = a. In the same way (f) is evaluated at point B, where x = P.
Then (e) provides de _]dcranywhere along the C+ characteristic shown in Fig. 10.2.3. The
particular values of a and # required to give characteristics passing through the point
C(x, t) are given by (10.2.13) and (10.2.14). The space derivative of (10.2.10) can now be
evaluated in terms of the initial conditions by using (e) and (f).

a$ )= /- U d-o v((+ d+ o • o() - O() (
T -(a+ i (X)- (g)

8 2v s, dx 2v, dx 2v,

Suppose that when t = 0 the string is static (ýo = 0) and the displacement is a uniform
pulse of magnitude A distributed between x = -a and x = a. Then we have

d50
-x (x) = A [uo(x + a) - uo(x - a)], (h)

where uo(x + a) is a unit impulse at the position x = -a. The resulting space derivative of
the displacement follows from (g) which becomes

ý (x, t) = A(S [uo(# + a) - u( - a)] + [uo( + a) - uo( - a)]
xF 2v, 2v,

(i)

Remember that a and # are given by (10.2.13) and (10.2.14). The first two terms in this
expression are recognized as impulses propagating along the C- characteristics originating

t

X= a

Fig. 10.2.3 Characteristics that intersect at a general point in space and time (x, t) showing
the points A and B at which the initial conditions determine the dependent variables at C.
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at x = -a and x = a, respectively. The last two terms are impulses propagating along the
C+ characteristics. We can obtain the displacement Cby integrating this equation with
respect to x. The resulting values of ý in two cases are shown in Figs 10.2.4 and 10.2.5. In
the first of these figures U is less than v, and we see that the original pulse divides into a part
propagating slowly in the -x-direction (upstream) and a part that is propagating rapidly
in the +x-direction. In Fig. 10.2.5 the convection velocity Uis greater than the propagation
velocity v, and, although the pulse divides into two parts, both parts are carried downstream
by the convection. Note that the convection also makes the L+and L_ waves unequal in
magnitude. In fact, when U exceeds v, the C, wave is inverted, as shown in Fig. 10.2.5.

We are now in a position to make an important observation about the
appropriate initial conditions and boundary conditions when the differential
equation of motion is (10.2.9). We first observe that this expression is a partial
differential equation that is second-order in both time (t) and space (z).
Consequently, we need two initial conditions and two boundary conditions to
evaluate all the constants in the solution. Where these conditions can be
applied depends on whether the convection velocity U is greater or less than
the propagation velocity v, and is essentially the question whether a disturb-
ance can propagate upstream (in the negative x-direction).

Consider first the case in which U < v, and disturbances can propagate
upstream. As an example, assume that the string deflection is fixed at x = 1.
Then we can say that ý = 0 along the line x = I in the x-t plane. This is one
boundary condition. A second boundary condition is that at x = 0 the string
position is driven independently

4(0, t) = $4(t). (10.2.15)

It is helpful to picture these conditions as shown in Fig. 10.2.6. The two initial
conditions can be specified as the initial displacement &(x, 0) and the initial
transverse velocity (a8/at)(x, 0). The solution for (xz, t) at an arbitrary point
C can be found as follows. First, the value of +,(a)that propagates from A to
B along a C+ characteristic is determined by the initial conditions at point A.
Similarly, the X_(#)wave propagating along a C- characteristic from E to
D is found from the initial conditions at point E. These incident waves,
together with the boundary conditions at B and D, determine the reflected
waves that travel from B to C along a C- characteristic [a L_(f) wave] and
from D to C along a C+ characteristic [a 4+(a) wave] described in Section
9.1.1b. Hence we have found the solution for the displacement at point C.
From similar arguments, perhaps involving many reflections of the waves,
we can find the solution at any point in the x-t plane in the interval of space
0<x<l.

Consider next the case in which U > v,. As indicated by Fig. 10.2.6b)
both the C+ and C- characteristics point downstream (positive x-direction)
as t increases and no disturbances can propagate upstream. Consequently,
we expect that initial conditions and boundary conditions applied downstream

10.2.1



Fig. 10.2.4 Propagation of an initially static displacement pulse on a string moving with
the velocity U = v,12.

Fig. 10.2.5 Propagation of an initially static displacement pulse on a string moving with
the velocity U = 2v,.

1



Waves and Instabilities in the Presence of Material Motion

U <v,

at
at

(a)
x

)(x,O)=
(x 0

(b)
Fig. 10.2.6 Boundary and initial conditions to establish solution ý(x, t) at a point C:
(a) U < v,; (b) U > v,.

from point C will not affect the displacement ý at point C because the effects
of initial and boundary conditions are transmitted in space and time by waves
that propagate along the characteristics. To make this discussion explicit we
refer to Fig. 10.2.6b and ask for the displacement at an arbitrary point C.
Note that the solution at C can depend on only conditions at A and B. Hence
causality is introduced as a physical law that must be obeyed by our mathe-
matical solution, and we assume that solutions evolve from left to right (in
the direction of increasing time) in Fig. 10.2.6. Hence it is necessary to impose
two conditions at A and two conditions at B. Note that this means that
boundary conditions along the (x = 0)-axis have the same nature as initial
conditions along the (t = 0)-axis. In addition to the two initial conditions
when t = 0, we can impose

W(0, t) = Md(t) (10.2.16)
and the slope at x = 0,

- (0, t) = Ad(t). (10.2.17)
ax

10.2.1
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With the initial and boundary conditions thus specified, we can calculate the
+(oc) wave that propagates along the C+ characteristic from B to C and the
f_(l)wave that propagates along the C- characteristic from A to C in Fig.

10.2.6b. Thus we have found the displacement at point C.
A comparison of Figs. 10.2.6a and b shows that the essential difference

between the two cases is that with U < tv,boundary conditions must be speci-
fied both upstream and downstream from the point in question because waves
propagate in both directions. For the case U > v, waves propagate down-
stream only; thus the boundary conditions must be specified upstream from
the point in question.

In the supersonic case (U > v5) it would violate causality to impose only
one boundary condition at x = 0 and the second condition at x = I. Waves
propagating along the C+and C- characteristics would have to know in advance
that they had to satisfy a boundary condition at C in Fig. 10.2.6b. This is an
important point because there can be no mathematical objection to a solution
to (10.2.9) with U > v, which satisfies one upstream and one downstream
boundary condition. Rather our objection is based on the physical require-
ment of causality.*

10.2.1b Sinusoidal Steady State

To appreciate fully the drastic effect of the convection it is important to
recognize the manner in which a sinusoidal steady-state condition is estab-
lished on the "supersonic" string. Suppose that with U > v, a sinusoidal
excitation is applied when t = 0 at x = 0. This is shown in Fig. 10.2.7, in

Fig. 10.2.7 A sinusoidal excitation turned on at x = 0 when t = 0 is applied to a moving
string (U > v.). At the downstream position x = I the sinusoidal steady state is established
when the slow wave arrives [t = I1(U - v,)].

* Nonlinear disturbances can propagate upstream even when U > v,. In the language of
gas dynamics these are "shock waves" that travel faster than the speed v, of small amplitude
disturbances. These nonlinear phenomena are beyond the scope of this work and are not
predicted by our simple, linear model. See, for example, R. Courant and K. O. Friedrichs,
Supersonic Flow and Shock Waves, Interscience, New York, 1948, Part II.
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which two sinusoidal driving conditions are imposed along the t-axis when
t > 0 and when t = 0 the string has a dynamical state specified by the initial
conditions.

Consider the string deflections that would be observed at the downstream
position x = 1.We have learned in this section that the solution at any given
time is determined by a superposition of fast and slow waves propagating
downstream on the C+ and C- characteristics, respectively. These characteris-
tics originate either on the x-axis, where the initial conditions are arbitrary, or
on the t-axis, where the boundary conditions are in the sinusoidal steady
state. From this it follows that there is no response to the sinusoidal drive
observed at x = 1until the fast wave initiated by the excitation at (a) in Fig.
10.2.7 arrives at (d). Hence, if the initial conditions are zero, there is no
response until t = 1/(U + vu). In the interval of time between the points d
and e at x = 1the slow wave is determined by the initial conditions, whereas
the fast wave is determined by the sinusoidal driving conditions. After the
slow wave arrives when t = 1/(U - v,), however, both characteristic lines,
which determine the solution at a given point along the line x = 1,originate
in the sinusoidal steady-state driving condition. Because the conditions that
determine the solution are then periodic in time, it follows that so also is the
solution; that is, after the time t = 1/(U - v,) when the slow wave arrives at
x = I the sinusoidal steady-state condition has been established. After this
time there is no evidence of the initial conditions.

Recall the nature of the response to the initial conditions, as described in
Section 10.1, in which the string has no longitudinal velocity. There the effect
of initial conditions was described in terms of the normal modes, and the
consequences of the initial conditions persisted in the form of these modes
for an indefinite period of time. As we saw in the examples of Section 10.1,
these modes are purely oscillatory unless other effects, such as damping, are
introduced.

In the sections that follow we introduce additional forces on the string, with
the longitudinal convection included (U > v,). Hence the examples considered
involve the same transverse forces that are developed in Section 10.1 but in
addition include the effect of convection. With this in mind, remember that
in the examples in Section 10.1 the normal modes, with amplitudes specified
by the initial conditions, determine whether the string deflections become
unbounded in time. In any of these cases the sinusoidal steady-state solution
can be found, but in cases in which the system is unstable this steady-state
solution is eventually dominated by the unstable normal modes. With the
convection, this dominance ofthe transient resulting from the initial conditions
is not possible. The sinusoidal steady-state solution is all that remains after
the time 1/(U - vj), which means that in the supersonic case (U > v8) it is not
possible for deflections to become unbounded with time at a given position x.

10.2.1
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The significance of these remarks becomes more evident in Section 10.2.3.
In any case it should be evident that with U > v, the driven response assumes
primary importance

If once again we assume complex waves (10.0.1) as solutions, substitution
into (10.2.9) shows that the dispersion relation between the frequency woand
wavenumber k is

(o - kU)2 = v,2k2 . (10.2.18)

Note that this is the relation obtained in Section 10.1.1, except that now
o -- w - kU, which reflects the fact that the effect of the convection is to

replace the time derivative with the convective derivative. (As we emphasize
in Section 10.2.4, care must be taken in transforming from one frame of
reference to another using this simple substitution by noting the parts of the
system that are moving.)

The dispersion equation has the graphical form of two straight lines, as
can be seen by solving (10.2.18) for w:

(t = k(U + v,). (10.2.19)

The subsonic and supersonic cases are shown in Fig. 10.2.8. The effect of
increasing U is to rotate the two straight lines of Fig. 10.1.1 until finally,
when U > v,, as shown in Fig. 10.2.8b, both straight lines are in the first
and third quadrants of the co-k plane.

The dispersion equation can be used to find the response of the string to a
drive with the frequency Cod by solving (10.2.19) for the wavenumbers k,
given that o = wo:

k = y± 7, (10.2.20)

w

(a) (b)

Fig. 10.2.8 Dispersion relations for waves on a string moving with the equilibrium
velocity U in the positive x-direction. Although the geometry for the subsonic and super-
sonic cases is the same as that for the characteristic lines in Fig. 10.2.2, the axes here are
co-k, whereas in Fig. 10.2.2 they are x-t: (a) U < v,; (b) U > v,.
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where for the string without additional forces

U

vs

(10.2.21)

U 2 -_ V 2

A graphic representation of these two wavenumbers corresponding to the
frequency we is given in Fig. 10.2.8. Remember that the phase velocity of a
wave is wok. With U < v,, phases of one wave propagate rapidly downstream
with the velocity v, = U + v,, whereas those of the other propagate up-
stream at the lesser velocity v, -- v, - U. With U > v,, as shown in Fig.
10.2.8b, phases of both waves propagate downstream. These results are not
surprising in view of the wave dynamics found in Section 10.2.1a.

Consider the sinusoidal steady-state dynamics resulting when U > v,.
Then, upstream boundary conditions in the form of (10.2.16) and (10.2.17)
are appropriate. In particular, suppose that

M(0, t) = 0 (10.2.22)

- (0, t) = Al cos wrt. (10.2.23)
ax

Then we can take a linear combination of waves with wavenumbers given
by (10.2.20) to satisfy the first of these conditions:

ý(x, t) = Re AeA" a• -il) sin yx. (10.2.24)

The remaining arbitrary constant A is determined by the second condition to
be A = Ao/y, and so the required sinusoidal steady-state driven response is

4(x, t) = -- cos (oat - nix) sin yz. (10.2.25)

We have found that when sinusoidal steady-state waves are excited on the
supersonic string they combine to form an envelope with nulls spaced by the
distance nr/y = rr(U 2 - v8s)•W~v,. Within this envelope points of zero phase
on the string move in the x-direction with the velocity 6od/ = (U 2 - v,2)/U.
The deflections are shown at an instant in time in Fig. 10.2.9.

The periodic envelope of the waves is stationary in space and therefore has
the same character as the standing waves found for the stationary string.
These peaks and nulls in the deflection are sometimes referred to as beats*

* The beating of two sinusoidal signals is commonlyencountered in demodulation processes,
such as those that occur in the ear when tuning two musical instruments. Tones that differ
slightly in frequency beat together at the difference frequency. This illustrates how phenom-
ena observed as functions of time are found as functions of space when the supersonic
motion of a medium is involved.

10.2.1
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Fig. 10.2.9 Fast and slow waves interfere to form beats in space when U > v,. The deflection
is as the string appears if illuminated once each period of excitation 2•/wgo.

because they result from interference between the two waves propagating
downstream. At some positions the deflections from the two waves tend to
add, whereas at others the deflections cancel.

In the sections that follow we undertake to show the effect of convection
on each of the classes of interactions developed in Section 10.1. In cases in
which the convection is equivalent to the entire system being in a state of
uniform translation this is a simple matter, since the effect of the convection
is represented by replacing the time derivatives in the differential equation
with convective derivatives.

10.2.2 Evanescence and Oscillation with Convection

The developments of Section 10.2.1 pertained to the effect of convection
on the dynamics of an ordinary string. In the absence of convection this
string supports waves that propagate without dispersion. In this section we
begin a discussion of the effects of convection on dispersive waves. In partic-
ular, we reconsider the systems that support the cutoff or evanescent waves
described in Section 10.1.2. Now the system is as shown in Fig. 10.1.2, except
that the wire has an equilibrium longitudinal velocity U. Because the mag-
netic restoring force is the same, whether evaluated in the frame moving with
the string or in a fixed frame, the equation of motion found in Section 10.1.2
(10.1.6) is valid in a frame moving with the velocity U in the x-direction.
As illustrated in Section 10.2, the equation of motion in the fixed frame is
obtained by replacing the time derivative with the convective derivative.
From this it follows that the dispersion equation with convection is obtained
by simply replacing w in the dispersion equation for the fixed system (10.1.7)
with w) - kU. Hence the required dispersion equation with convection is

(, - kU)2 = v, 2k 2 + w~ . (10.2.26)

The graphical repres tion of this equation is shown in Fig. 10.2.10,
in which U < v, and U > v, are shown. These plo' give complex values of k

I
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for real values of co. It should be clear from the plots and the fact that the
dispersion equation is quadratic in to that only real values of Cware given by
(10.2.26) for real values of k.

The asymptotes of the dispersion equation are the two straight lines of Fig.
10.2.8a, b.Hence the result of increasing the velocity U is to rotate the hyper-
bolas in a counterclockwise direction. To make further deductions about the
dispersion equation, it is helpful to solve (10.2.26) for k.

k = q + y, (10.2.27)
where

(odU

U -Uv,-
(10.2.28)

/v8~,'od + (U' - v8
2")e0

2

This makes it evident that in the case in which U < v,, there is a range of
driving frequencies over which the wavenumbers are complex. From the
last two equations, this is the range of od over which the quantity under the
radical is negative.

(Va< " U2)O . (10.2.29)

The complex values of k are shown in Fig. 10.2.10a, in which the imaginary
part of k takes the form of an ellipse and the real part of k (the straight line)
is the same for both waves.

(0)

Fig. 10.2.10 Dispersion relations for system of Sectior ' 1.2, with the addition of a
longitudinal velocity U. When U exceeds v,, both waves pr dtewithout decay, regardless
of the frequency, and the effect of the convection is to eliminat, the evanescence. (a) U < v,;
(b) U > v, .

10.2.2
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Two cases are shown in Fig. 10.2.10a. At the lower of the two driving
frequencies waves with wavenumbers whose real part is 7? and imaginary
parts, --j ly are cutoff. At the larger driving frequency both wavenumbers
are real. Note that the effect of the convection has been to make the cutoff
wavenumbers complex rather than purely imaginary, as they were when the
string was stationary.

As U is raised, the ellipse of Fig. 10.2.10a becomes smaller, until under the
critical condition that U = v, it disappears and only real values of k are
possible. Hence in Fig. 10.2.10b there are two real wavenumbers corresponding
to a given driving frequency wo.

It is evident from what we have found that the effect of the convection
has been to eliminate the evanescence. Two cases are illustrated in Fig.
10.2.10b. At the larger of the two driving frequencies both wavenumbers are
positive and points of constant phase on the waves propagate downstream.
At the lower driving frequency, however, the phase velocity of the slow wave
is in the negative x-direction (upstream). This is perhaps our first disenchant-
ment with the physical significance of the phase velocity. In fact, a pulse
initiated at some point along the moving string would not propagate up-
stream in the face of the convection. The phase velocity does not indicate the
manner in which a wavefront would propagate.

We introduced a discussion of the propagation of pulses on the moving
string in Section 10.2 because it clearly indicated the direction in which a
disturbance would propagate on the string. The string alone, however, is a
rather special case in that such sinusoidal steady-state quantities as the phase
velocity are identical with the actual propagational velocity of wavefronts.
This is why the string merits the designation "dispersionless medium." In
general, the phase velocity has no more significance than that associated with
the dynamics of the sinusoidal steady state. We return to a discussion of
propagational velocities in Section 10.3. For now, suffice it to say that
regardless of the types of dispersion introduced with the examples of this and
the preceding section wavefronts propagate with the velocities U + v, and
U - v,. Hence boundary conditions are imposed in accordance with the
relative values of U and v,, just as they are with the string alone.

If U isless than v,, a pulse on the string can propagate upstream. Hence in
Fig. 10.2.10a it is appropriate to use the wavenumbers to provide solutions
that satisfy one upstream and one downstream boundary condition. Just as
in the case considered in Section 10.1.2 the complex wavenumbers indicate
that the deflections excited at one end decay spatially from the point of
excitation. In the supersonic case shown in Fig. 10.2.10b it is appropriate to
impose two boundary conditions at an upstream position. The sinusoidal
steady state is then established in essentially the same way as for the moving
string alone (Fig. 10.2.7). In fact, the wavenumbers now have the same form
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considered in Section 10.2.1 (10.2.20), except that ri and y are defined by
(10.2.27). Without any further mathematical developments, we can see that
driving conditions in the sinusoidal steady-state form of (10.2.22) and (10.2.23)
lead to the deflections given by (10.2.24) and shown in Fig. 10.2.9. The waves
combine to form spatial beats as an envelope. The most salient consequences
of the dispersion introduced by the addition of the magnetic restoring force
can be seen if we consider the limit in which the tension on the string is of
negligible importance. Then v, - 0 and n2and y, as given by (10.2.28),
reduce to

Cod

U (10.2.30)
(0)

U

It follows that the string deflections for the sinusoidal steady-state solution of
(10.2.25) become

(AU F / x\ 102 w3x
(x, t)= - cos [a t - - sin (10.2.31)

We U U

The envelope of the waveform is determined by the cutoff frequency Coe,
whereas the phase velocity of the waves within this envelope is simply the
convection velocity U.

In the absence of a tensionf each section of the string is subject only to the
spring like restoring force of the magnetic field. Because each section has a
mass, the resulting dynamics can be pictured in terms of the mechanical model
shown in Fig. 10.2.11. Here the mass has been lumped at discrete positions so
that it is clear that each section of the string behaves as a simple mass-spring
oscillator. As in Section 10.1.2, the spring represents the effect of the field.
The convection carries these oscillators in the x-direction with the velocity U.

The resonance frequency of the mass-spring oscillators is we. We can see
this by recognizing that in the moving frame the equation of motion takes the
form found with a simple harmonic oscillator.

- -We 2 . (10.2.32)

U

Fig. 10.2.11 When f ý O(v, 0), the moving string subject to the restoring force of the
magnetic field is equivalent to a distribution of mass-spring oscillators with the resonance
frequency w, and moving with the velocity U in the x-direction.

10.2.2
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The example that follows illustrates how this type of dynamics develops in
dealing with electron beams.

Example 10.2.2. The dynamics of moving oscillators is of importance in dealing with
interactions between streaming electrons and various media, such as distributed circuits,
plasmas, and solid-state lattice structures. The similarity between the electron and string
dynamics treated in this section can be illustrated by considering a simple one-dimensional
example.

Suppose that a given region of space is filled with electrons with the number density ne
and ions with the number density ni. We assume that these particles do not interact with
one another, except through their electric fields. In the equilibrium situation both the
electrons and the ions are static. Moreover, the ion charge density is equal to the electron
charge density, so that there is no net charge so long as the system of particles is in equilib-
rium; for example, if both the ions and electrons have a single electronic charge e, the ion
charge density en i just balances the electron charge density -ene when the system is in
equilibrium.

We are concerned here about the dynamics of the electrons, which have a much smaller
mass then the ions. For this reason, it is a good approximation to consider the more
massive ions as fixed, hence as having a constant number density. Then the perturbation
from equilibrium charge density is

Pe = (ni - ne)e = -ne, (a)

where n(x, t) is the amount by which the number density of electrons exceeds the equilibrium
value ne at any given (x, t).

To describe the electric part of this interaction it is recognized that the charge density is
related to the electric field intensity by Gauss's law. In one dimension this is

aE ne
X- (b)

In addition, conservation of charge in one dimension becomes

a- + - = 0, (c)Tx -at

where Jf is the current density. In the present case currents arise only because of the motion
of the electrons in the x-direction; hence

Jf = -(ne + n)ev - -nee, (d)

where v is the longitudinal (x) electron velocity and the last approximate equality results
from a linearization.

The mechanical equation of motion is Newton's law expressed for each of the electrons
(having the mass m). av

m - = -eE. (e)at
Now, a combination of (a) through (e) gives

a2n
a2t + o,2n = 0, (f)

where /n.e 2 \Y

(Op=( _I
\EO'M /
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(a) (b)

Fig. 10.2.12 Dispersion plot for electron oscillations having the plasma frequency w,:
(a) the electrons with a fixed equilibrium state; (b) electrons with an equilibrium velocity U
in the x-direction.

On the basis of the developments in this and the preceding section, it is a simple matter to
see that if the electrons have an equilibrium state of motion in the n-direction with the
velocity U (f) is altered to

+ U n + w,2n = 0. (h)

The dispersion equations for these two situations are shown in Fig. 10.2.12. The plasma
frequency w, plays the same role here as the cutoff frequency cw, in the discussion of this
section. The string dynamics in the magnetic field are described by the same dispersion
equation found here in the limit in which v, - 0. Note, however, that the electron motions
considered here are longitudinal, whereas the deflections of the oscillators (Fig. 10.2.11)
are transverse.

In electron beam devices similar oscillations are obtained on a beam with finite cross-
sectional dimensions by imposing a large longitudinally directed magnetic field. The
Lorentz force -ev x B then tends to confine these space-charge oscillations to the
longitudinal direction.*

10.2.3 Convective Instability or Wave Amplification

Continuum instability is the subject of Section 10.1.3, in which the simple
string, under the influence of a destabilizing magnetic force (Fig. 10.1.9),
sustained deflections that grew exponentially with time.

In this section we shall find that if the unstable medium moves fast enough
the instability will be carried downstream and a perturbation can grow in
amplitude, but not at the same point in space at which it originated. This

* For a discussion of electron beam dynamics, see C. C. Johnson, Field and Wave Electro-
dynamics, McGraw-Hill, 1965, p. 277. The analogy between the moving string and the
electron beam should make it clear to those who are familiar with the two-cavity klystron
that the moving string with U > v, can be used to make a "stringtron" or amplifier using
the longitudinal kinetic energy of the string as a source of energy.

II__
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type of instability can be excited in the sinusoidal steady state, in which case it
appears as a spatially growing wave. Hence this convective instability is
also called an aniplifying wave, since it can be used to amplify a driving signal.

Some electron-beam devices, such as traveling wave tubes (TWT), make
practical use of amplifying waves. In addition, convective instabilities play
important roles in a variety of physical situations, ranging from fluid
dynamics (boundary layer dynamics) to physical acoustics (ultrasonic
amplification). In some cases the convective instability can be put to work,
and in others the convective instability occurs inherently in a system and
must be understood.

We can illustrate the basic nature of the amplifying wave by considering
the effect of convection on the instability studied in Section 10.1.3. We now
include the fact that the string is moving in the x-direction with the velocity U.

The effect of the convection isaccounted for by replacing the time derivative
in the equation of motion by the convective derivative. Hence (10.1.25)
becomes

+aU2a a2 +
+ U+ k 2 . (10.2.33)

vo at i 82a

Remember, ke2 is proportional to the current I in the wire and the gradient
of the imposed magnetic field.

Substitution of the traveling wave solution (10.0.1) into this equation of
motion yields

(co - kU)2 = v, 2(k 2 - kc2). (10.2.34)

We could just as well have obtained this dispersion equation by replacing
co in the dispersion equation of Section 10.1.3 with cw - kU. The effect of
the convection is simply to translate the entire system in the x-direction with
the velocity U. As in Section 10.2.2, however, the excitations and frame of
observation remain fixed, and it is this fact that makes the situation inherently
different from the case with no convection.

Equation 10.2.34 is quadratic in either co or k. Solving it for cw shows that
there are "unstable" values of co for real values of k(Ikl < kQl)

co = kU + Vv,2(k2 - k,2). (10.2.35)

We have seen situations in which a negative imaginary value of to resulting
from a real value of k indicates that the deflections become unbounded with
time (Section 10.1.3). In fact, if U = 0 and the string is fixed at each end,
the allowed values of k = n3r/l, and the associated eigenfrequencies are given
by (10.2.35). With the string moving with a velocity U that exceeds v,, it is
no longer consistent with causality to impose a downstream boundary
condition. This means that the response to initial conditions is no longer
defined in terms of eigenmodes, but rather that it has the character described
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in Section 10.2.1. With U > v,, we impose two boundary conditions at x = 0.
At any downstream position the transient response to the initial conditions
is over when a slow wavefront arrives from x = 0. Hence the deflections of
the string can no longer become unbounded with time at a fixed position x.
If the boundary conditions at x = 0 are both zero, the response will be zero
once the transient is completed.

Consider the consequences of a sinusoidal steady-state boundary con-
dition at x = 0. Solution of the dispersion equation shows that for w = •O,
the wavenumbers k are

k = 1 ± jy, (10.2.36)
where

- 2 -
• 

'

v, (U' - v2')k -_d

U2 _-v 2

The dispersion equation is shown graphically in Fig. 10.2.13. In this w-k
plot complex values of k are shown as functions of real values of 0w.As can
be seen from (10.2.36), over the range of frequencies

0ca1 < (U2 
- vs2)kc2, (10.2.37)

the wavenumbers are complex. Each wavenumber has the same real part over
this range, which depends linearly on w, as shown by the straight line in
Fig. 10.2.13. As a function of wo,the imaginary part of k forms an ellipse. Of

-- kr

-- ----ki

Fig. 10.2.13 Dispersion plot for supersonic string with a destabilizing magnetic force
that shows complex values of k for real values of o.

10.2.3
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Fig. 10.2.14 Instantaneous view of string deflections when they are convectively unstable.

course, if the driving frequency exceeds a maximum value (10.2.37), both
wavenumbers become real and the driven response takes on the form
discussed in Section 10.2.1b.

To appreciate the significance of what we have found, consider once again
the sinusoidal steady-state response to the boundary conditions of (10.2.22)
and (10.2.23). Following the procedures outlined in Section 10.2.1b, we take
a linear combination of the two waves which satisfies the boundary conditions
at x = 0.

$(x, t) = sinh lyIx cos (wt - qx). (10.2.38)

Here we have assumed that the driving frequency o a is the lower of the two
shown in Fig. 10.2.13 so that the wavenumbers are complex.

The displacement given by (10.2.38) is shown as a function of x at a given
instant of time in Fig. 10.2.14.*

Points of zero deflection move downstream with the phase velocity w!,/r.

Most important, the displacements have an envelope that grows exponentially
with increasing x. The effect of the motion on the instability is now apparent.
Rather than having an amplitude that is a monotonically increasing function
of time at a given point in space, the displacements are now bounded in time
but exhibit an exponential growth in space. The convection is responsible for
washing the instability downstream.

The convective and absolute instabilities impose very different limitations
on the engineering of systems. The largest amplitude obtained by the string
within a given length is determined by the input of signals, perhaps in the
form of noise, to the system. The more nearly the excitations are eliminated
from the system, the more nearly will the string maintain its equilibrium

* The reason for the term "amplifying wave" is that an output transducer downstream from
the excitation can extract a signal of the same frequency as the excitation but at a higher
power level. The source of power is the moving medium.

~I I I
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position. This is by contrast to the case of absolute instability, in which,
inadvertently, no matter how carefully the conditions of the string are set,
initial noise will result in displacements that become unbounded in time.

The following example affords an opportunity to gain further physical
insight into the nature of the convective instability.

Example 10.2.3. In Section 10.1.3 (on absolute instability) an example was considered
in which a highly conducting membrane stressed by an electric field was found to be ab-
solutely unstable (Example 10.1.2). Figure 10.2.15 shows a somewhat similar situation in
which a jet of water passes between plane-parallel electrodes. The jet moves in the z-
direction with the equilibrium velocity U. Transverse or kinking motions of the stream can
be modeled by the string equation with the effect of convection included. In the jet the
tension fis due to surface tension.

The jet is grounded, but the plates are at the same constant potential V shown in the
figure. This is an electric field system, and because the time required for free charges to

Fig. 10.2.15 (a) A jet of water has a streaming velocity U midway between plane-parallel
electrodes. A potential difference V is applied between the plates and the jet. (b) As the
jet is deflected toward one of the plates, an unbalance in the electric force of attraction tends
to carry it even farther in the direction of deflection. The instability resulting from this
force is washed downstream to form the convective instability sketched in Fig. 10.2.16.

10.2.3
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relax from one point to another on the water jet is extremely short compared with dynamical
times of interest, the jet can be regarded as perfectly conducting; that is, the potential
difference between any point on the jet and either of the electrodes is the constant V. This
is the same electrical situation as in Example 10.1.2, in which the membrane and electrodes
retained a constant potential difference even as the membrane deflected. The dependence of
the electric force on the jet displacement is much the same as in the membrane.

A cross section of the jet and plates is shown in Fig. 10.2.15b. When the jet is centered,
charges induced on its surface are attracted equally toward their images on each of the
plates. Hence there is no net transverse force on the jet so long as it remains centered. If,
however, it moves offcenter by the amount E,there is a net force. More charges are induced
on the side of the jet that is nearer one of the plates (remember that the potential difference
is constant and so the jet and plates form a constant potential capacitor). This surplus of

(b)

(CJ

Fig. 10.2.16 Sinusoidal excitation of jet shown in Fig. 10.2.15. Driving frequency decreases
from (a) to (c). This experiment together with animated co-k plots can be seen in the film
"Complex Waves II," produced for the National Committee on Electrical Engineering
Films by the Education Development Center, Newton, Mass.

.. - - 4) VrN- ---V-
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charge is attracted toward its image on the plate. Hence the force is (to linear terms)
proportional to ý and in the same direction as &.Both the amount of surface charge and
the electric field are proportional to V, hence the force, which is proportional to the product
of these quantities, is proportional to V2. We conclude that the force per unit length acting
on the jet transverse to its direction of streaming has the form

S. = bV 2C, (a)
where b is a geometric constant.

If we combine the electric force of (a) with the equation of motion for the jet alone
(10.2.9), it follows that the equation for the jet in the electric field will take the form of
(10.2.33) with

b V2

kc2 = . (b)

A jet of tap water with the diameter of a pencil and moving with a longitudinal velocity of
2 m/sec has a convection velocity U that exceeds v8 by a factor of 10 or more. Hence in the
presence of the electric field the jet is subject to convective instability. It can be excited in
the sinusoidal steady state at the upstream end to obtain the response illustrated by (10.2.38)
and sketched in Fig. 10.2.16.

In the sequence of sketches the driving frequency w~ is reduced, as indicated on the
corresponding w-k plots. Hence in Fig. 10.2.16a the frequency is high enough that wave-
numbers are real and beats form on the jet, as described in Section 10.2.2. In Fig. 10.2.16b,c
the frequency is reduced to the point at which the wavenumbers are complex and the waves
exhibit spatial growth. Note that as the frequency is reduced the wavelength is increased
and the rate of spatial growth is increased. This is consistent with the prediction of the w-k
plot, since the rate of growth is proportional to the imaginary part of k, whereas the
wavelength is inversely proportional to the real part of k.

The physical significance of the complex wavenumbers found in this
section is altogether different from that for the evanescent waves. In Section
10.1.2 complex wavenumbers were used to represent waves that decayed
spatially away from the point of excitation. Here the deflection amplitude
grows as a function of distance from the excitation.

The contrast between evanescent and amplifying waves must be emphasized,
for even though these waves are physically very different they can be con-
fused mathematically; for example, we could arbitrarily impose two up-
stream sinusoidal steady-state boundary conditions on the evanescent waves
found in Section 10.1.2. The resulting mathematical solution would exhibit
spatial growth and would appear to be an amplifying wave. Similarly, we
could use the waves represented by (10.2.34) with U > v, to satisfy boundary
conditions at two points in space and to conclude that waves decay away
from the point of excitation. What we have called a convective instability
in this section would then appear to be an evanescent wave. Both sinusoidal
steady-state solutions, however, would be inconsistent with causality. The
boundary conditions would make it impossible to establish the sinusoidal
steady-state solution with the past always affecting the future and not vice
versa.

10.2.3
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The dispersion equation, as we have used it here, simply guarantees that
solutions with the form expj(wt - kx) satisfy the equation of motion. To
make appropriate use of these solutions requires that proper regard be taken
of the physical realizibility of boundary conditions imposed on the solutions.
The examples considered here are so simple that we could use physical
intuition or a knowledge of how the system behaves without dispersion effects
to establish the correct boundary conditions. Our arguments hinge essentially
on observing how the system responds from the moment it is "turned on"
until the sinusoidal steady state has been established. If the sinusoidal steady
state can be established without violating conditions of causality, it is
physically significant. We return to this topic in Section 10.3, in which
propagation in the presence of dispersion is considered.*

10.2.4 "Resistive Wall" Wave Amplification

As shown in Section 10.2.3, the instability ofcontinuous media in motion can
give rise to amplifying waves. In the frame of reference attached to the
moving medium the convective instability appears to grow in time, but in the
fixed frame it is bounded in time. Hence it can be excited in the sinusoidal
steady state with an attendant spatial growth.

Although the combination of material convection and absolute instability
is one way of obtaining a convective instability, it is by no means true that
this is the only way in which convective instabilities arise. Convective in-
stabilities or amplifying waves often result when a stream interacts with a
fixed structure. This is how amplifying waves are obtained in a traveling wave
(electron beam) tube. A beam of electrons is coupled to a fixed electro-
magnetic transmission line. Similarly, beams of electrons or holes can couple
to solid-state crystal structures to produce amplifying waves. These systems
are more complicated than those introduced in this section because they
involve more than two waves. Not only do the beams support waves, but so
also do the fixed structures. Here we can illustrate this class of phenomenon
by coupling the moving continuum to a fixed structure that does not support
waves-simply a resistive wall. In fact, resistive wall instabilities are also
found in electron beam devices and particle accelerators.

With the developments of Section 10.1.4 in view, it is a simple matter to
illustrate how convection, in conjunction with the damping, can produce wave
amplification. Consider once again the situation in which the string is

* For a general discussion of this topic see A. Bers and R. J.Briggs, "Criteria for deter-
mining absolute instabilities and distinguishing between amplifying and evanescent waves,"
Bull. Amer. Phys. Soc., Ser 2, 9, 304 (1964) or R. J. Briggs, Electron-StreamInteraction
With Plasmas,M.I.T. Press, Cambridge, Mass., 1964, pp. 8-46.

t F. H. Clauser, Symposium on PlasmaDynamics, Addison-Wesley, Reading, Mass., 1960,
pp. 78-118.
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Fig. 10.2.17 The string moves unimpeded in the z-direction with the velocity U, and
transverse motions are retarded by dashpots that interact with the string through rollers.
The dashpots are fixed to the laboratory frame of reference.

immersed in a viscous liquid. Now, however, the string has a longitudinal
velocity U. We assume that the convection of the string in the x-direction is
unimpeded by the viscous fluid, even though the transverse motions lead to
transverse viscous retarding forces. For conceptual purposes it is helpful to
think of the system as being equivalent to that shown in Fig. 10.2.17.

The damping remains in the fixed frame. This means that the effect of the
string motion is not simply accounted for by replacing time derivatives in
(10.1.33) with convective derivatives, as would be appropriate with the total
system in motion. We do, however, know the equation of motion for the
string alone (10.2.8). Because the damping force does not depend on the
motions, it remains as given by (10.1.32). Hence the equation of motion is
(10.1.33) with the second time derivative (acceleration term) replaced by the
second convective derivative but with the damping term left unaltered.

a a2$ a$
-+ U- = a- v (10.2.39)atx ax- at

As in Section 10.1.4, the wavefront velocity v, and damping frequency v are

B

It follows from (10.2.39) that traveling wave solutions must satisfy the
dispersion equation

(w - kU)2 = v, 2k 2 + jwv, (10.2.40)

which has the same form as (10.1.36), except that the w on the left has been
replaced by w - kU. Now, this dispersion equation, like others introduced
in this and the preceding section, is simply quadratic in co and k. Hence we

10.2.4
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can solve for either o or k. Observe first that w(k) is

w kU + [ kU + -- (U 2 - v,2)k2 . (10.2.41)

If U exceeds vs, this result shows that for real values of k there are negative
imaginary values of w. The w-k plot, which shows complex values of o
for real values of k, is sketched in Fig. 10.2.18. This plot should be compared
with Fig. 10.1.19 to appreciate the effect of convection. The convection is
responsible for replacing the damping found (in Section 10.1.4) with U < v,
by an instability. It would be erroneous, however, to assume on the basis of
(10.2.41) that deflections of the string would become unbounded with time
at a fixed position x. As in Section 10.2.3, the fact that U exceeds v, requires
that two upstream boundary conditions be imposed. In a manner similar to
that discussed in Section 10.2.1b, the response to initial conditions vanishes
in a finite time at a given position. Hence a sinusoidal steady state can be
established, and the corresponding mathematical solution is found by solving
(10.2.40) for k as a function of o.

owU - V,/v,22 + (U2 - v, 2)(jwOY)
k = (10.2.42)

(U2 - vs2)

This dispersion equation is shown in Fig. 10.2.19, in which complex values
of k are shown for real values of to. Note that the phase velocity of both
waves is now downstream. More significant is the fact that because U > v,
the wave with a positive imaginary wavenumber grows spatially. With the

Fig. 10.2.18 Dispersion equation for resistive wall instability. Complex values of w are
shown for real values of k. Although this plot indicates that the string deflections are un-
stable, the instability is exhibited as a growth in space rather than in time.
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kr

Fig. 10.2.19 Dispersion relation for resistive wall instability. Complex values of k are
shown as functions of real values of w. The effect of convection is apparent if this plot is
compared with that shown in Fig. 10.1.17 (where U = 0).

damping removed, this is the wave that tries to buck the convection and,
because U > v,, propagates slowly downstream. The amplifying slow wave
is denoted by (s) in Fig. 10.2.19; the spatially decaying fast wave is labeled
(f). This amplifying wave has been termed a resistive wall instability because
it is often found in electron beam devices when the beam is coupled to a
resistive wall. The mechanical dampers might also be viewed as a resistive
wall. The same effect as the dampers, however, is produced by coupling the
continuum through a magnetic field to a dissipative structure, as shown in
Example 10.1.3. With motion, that example quite literally illustrates a
resistive wall instability, as discussed in the following example.

Example 10.2.4. Consider once again the perfectly conducting membrane shown in Fig.
10.1.7. Recall that the membrane is immersed in a longitudinal magnetic field that is uniform
when the membrane is undeflected. Because the edges of the membrane make contact with
side walls, which in turn form electric circuits above and below the membrane, deformations
are accompanied by currents that tend to conserve the total flux above and below the
membrane. We consider here the effect of convection when the resistance of the walls is so
high that the self-inductance of the external current loops is unimportant. This limit was
discussed in Example 10.1.3, in which it was found that the wall had the effect ofdamping
the transverse motions.

10.2.4
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We now introduce the additional complication that the membrane is moving in the x-
direction with a velocity U > v,. The resistive walls remain fixed. Consequently, the equation
of motion, which for the membrane without convection takes the form of (e) in Example
10.1.3, becomes

(t±-V = v,a t2, (a)

where v, = VS/l m, and v = 2e(,(oHo)2/am. The left-hand side of this equation reflects the
effect of convection on the moving membrane, whereas the damping force on the right
remains unaffected. This can be shown by using a contour of integration for Faraday's law
[contour (a) or (b) in Fig. 10.1.8] just as in Example 10.1.1 but with the segment through the
membrane moving in the x-direction with velocity U. Because the membrane is perfectly
conducting E' = 0 over that segment and, moreover, there is no addition to the rate of
change of the flux linked by the contour.

Because (a) has the same form as (10.2.39), we conclude that the moving membrane
coupled to the resistive wall is subject to convective instability.

A physical picture of the variety of convective instability studied in Section
10.2.3 is not difficult to obtain. In a frame of reference moving with the string
the amplitude becomes unbounded with time for the same reason that it does
when the string is stationary. Without the motion, however, the system we
consider in this section is stable. In fact, we normally think of damping as a
stabilizing influence. Yet the combination of the convection and damping
leads to instability!

An understanding of this instability can be obtained by considering string
deflections in a frame of reference moving with the string, represented by
Fig. 10.2.20. In this frame the string appears to have no longitudinal velocity
but the resistive wall (the dampers) moves in the -x-direction with the velocity
U. The viscous force, expressed in terms of the coordinates (x', t'), is

S, = - -U a . (10.2.43)

.• -U

ISzl= AUB Isl= AUB

Fig. 10.2.20 A pulse is initially stationary when viewed from a frame moving with the
string. Then, as the dashpots move to the left, they produce a force with a sign determined
by the slope of the string.
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The first term, familiar as the retarding force due to the transverse velocity,
will always act in a direction opposite to that in which e is temporally
increasing. The second term enters because, with the dashpots moving to the
left, the plungers must change their positions at a rate determined by U and
the slope of the string; for example, suppose that the pulse is instantaneously
stationary in the x'-frame. The moving dampers will tend to increase the
deflection when the slope is positive and decrease it when the slope is negative.
Hence the back of the pulse tends to grow, whereas the front of the pulse is
flattened by the moving dampers. As the regions of positive slope grow, they
move to the right when viewed in the fixed frame, and we have the ingredients
of a convective instability.

10.3 PROPAGATION

The situations developed in the last two sections provide an ample back-
ground for embarking on a discussion of wave propagation in distributed
systems exhibiting dispersive waves. In retrospect, it is clear that we have
either confined attention to sinusoidal steady-state behavior or, when
transient conditions were considered, to nondispersive waves (with and
without convection); for example, in Section 10.2.1 we used the moving
string without external forces to illustrate how conditions of causality restrict
the boundary conditions that can be imposed. Throughout our discussion we
have assumed that even with dispersive waves (an extreme example is the
convective instability) we are justified in imposing two upstream conditions
if U > v, and one upstream and one downstream condition if U < v,. In
fact, our assumption is correct but this is not obvious. One way to ask the
question is this: if a pulse is initiated on the string, does any part of it
propagate upstream? If so, we must impose a downstream boundary
condition. We have illustrated that the phase velocity of a periodic wave is
not a reliable basis for answering this question. We begin by reviewing this
point.

10.3.1 Phase Velocity

Suppose that we restrict attention to waves that are purely sinusoidal in
space and time so that both o and k are real. Then points of constant phase
propagate with the velocity,

v - (10.3.1)
k

On an o-k plot this phase velocity has the geometrical significance shown
in Fig. 10.3.1. As long as we are dealing with nondispersive waves, the phase
velocity is identical with the velocity of propagation of wavefronts, which is

^·
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k

Fig. 10.3.1 The slope of the line joining the point (w, k) and the origin is the phase velocity.
The tangent of the co-k curve at this same point is the group velocity.

why the co-k plots of Fig. 10.2.8 appear so similar to the characteristic lines
in the x-t plane, shown in Fig. 10.2.2. For the moving string without
external forces wavefronts propagate with the velocities U - v, (the slopes of
the characteristics), and these are the phase velocities of the fast and slow
waves in the sinusoidal steady state.

It would be an assumption to say that the phase velocity is always the
velocity of propagation of a wavefront, and we have examples from which to
choose to show that this assumption is not well founded. In the case in which
we have the possibility of evanescent waves (Fig. 10.1.3) the phase velocity
approaches infinity as k - 0, and it is certainly unreasonable to assume
that a pulse will propagate with this velocity. Even more obvious, since v, is a
function of co or k, which value do we select as the velocity of a wavefront?
Considerations of this type lead us to consider other velocities such as the
group velocity.

10.3.2 Group Velocity

The group velocity of waves with frequencies in the neighborhood of co is
defined as

dco
v - (10.3.2)

dk

or as the slope shown in Fig. 10.3.1. The velocity vg has the physical signifi-
cance of being the velocity of propagation of a group of waves with essentially
the same wavenumber and frequency.

A straightforward way to show the dynamical meaning of the group
velocity is to consider an excitation in the form of

4(0, t) = $0[1 + cos cvt] cos cowt,

I

(10.3.3)



which is recognized as amplitude modulation of a sinusoidal excitation with a
frequency co,. The amplitude of the excitation varies between 2$0 and 0 with a
frequency om,. The nature of the resulting waves is most easily demonstrated
if it is assumed that the string has an infinite extent in the x-direction and
excitations are applied in such a way that only one of the two possible waves
is excited.

A trigonometric identity* converts (10.3.3) to

E(0, t) = ý0 cos 8o,t + ½J0[cos (eo, + o,,)t + cos (w, - wco)t], (10.3.4)

which is the familiar statement that a sinusoidal signal with a frequency w,,
amplitude modulated at the frequency wo,., is equivalent to three signals with
frequencies C,, co, + J,,, and nw, - ,o. Because the wavenumber depends on
the frequency of excitation, each of the terms in (10.3.4) excites a wave with
a different wavelength.

Attention is confined to situations in which c,o <(< o,. Then the wave-
numbers corresponding to en, -± -n are given approximately by k =
k, + -m/V,. Figure 10.3.2 shows graphically the relationship between
frequencies and wavenumbers. The wavenumbers adjacent to k, are obtained
by assuming that in the vicinity of the point (wo,, k,) the dispersion equation
can be approximated by a straight line whose slope v, is the same as that in
the wo-k plot.

If only one wave is excited, the first term in (10.3.4) gives rise to the string
deflections

ý(x, t) = o0 cos (co,t - k,). (10.3.5)

W8 + (Am

uis
WS - W Ws -I O~r

- N 1,

k,- k,. ks + 0-
ve va

Pig. 10.3.2 For waves with very nearly the same frequency the group velocity v, can be
used to represent the dispersion.

* cos A cos B = H[cos (A + B) + cos (A - B)].
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The excitations at the sum and difference frequencies co, ±- o,, lead to similar
waves with wavenumbers k, + w,,/v, which are now superimposed to find
waves resulting from the total excitation.

6(x, t) = ýo cos (cot - kx)

+ ie cos [(wct - kx) + com(t - -

+ cos [(cost - kx) - ,co t(t- -. (10.3.6)

We again use a trigonometric identity* to write this expression as

(, t) = co[1+ cos at - cos (co,t - kx), (10.3.7)

so that it is clear that displacements take the form of a wave, with a frequency
o,, which is modulated by another wave with a frequency wo.. At an instant

of time the string appears as shown in Fig. 10.3.3. A point of constant phase
(a zero crossing) moves to the right with the phase velocity w0,/k , . By contrast,
a point of constant phase on the envelope moves to the right with group
velocity v,.The group velocity is therefore interpreted as the velocity at which
the group of waves, defined by the envelope, propagates in the x-direction.
Note that because the phase and group velocities are different the waves will
appear to move with respect to the envelope. In the co-k plot of Fig. 10.1.3
(which was the subject of Section 10.1.2) the group velocity is less than the
phase velocity; hence the phases move downstream more rapidly than the
envelope.

Our analysis presumes that the wavetrain of Fig. 10.3.3 extends to infinity
in the x-direction and that the sinusoidal steady state has been established.

-*Vg

Fig. 10.3.3 Wavetrain amplitude modulated at a frequency that is much lower than the
wave frequency. The string appears as shown by the solid line at an instant in time.

* cos (A + B) = cos A cos B - sin A sin B.



Hence it does not directly indicate the manner in which a pulse propagates.
Suppose, however, that we were concerned with the propagation of the pulse
obtained by eliminating all the wavetrain except the one full pulse in Fig.
10.3.3 bounded on either end by the nulls in the envelope. It is not possible
to describe this signal as the superposition of three sinusoidal signals, but,
if we take the Fourier transform of this signal*

(wo, k) = f+f (x, t)e-J(wt+k' ) dx dt, (10.3.8)

we find that its major frequency and wavenumber components are in the
neighborhood of (cow,, k,). Provided that the spectrum of frequency (hence,
because of the dispersion equation, the wavenumbers) of a pulse is confined
essentially to a small region, the group velocity gives a measure of the
velocity of the pulse. In terms of (x, t) this pulse is almost a pure sinusoid,
except for a slowly varying envelope.

From this discussion it should be clear that the group velocity can be used
to ascertain the "over-all" velocity of a high-frequency pulse, but because
only those portions of the pulse that have a slowly varying envelope can be so
described the group velocity is not the velocity of a wavefront. As we have
seen, in the region of a wavefront deflections vary rapidly and, in fact, can be
discontinuous. Hence the group velocity is not appropriate for determining
the boundary conditions consistent with causality. As for the phase velocity,
we might have suspected this limitation from the outset, since the group
velocity is a function of cw or k. We hope that the question whether two
upstream boundary conditions or one upstream and one downstream
boundary condition should be used is independent of the dynamical quantities
co and k.

We must make one further reservation concerning the physical significance
of the group velocity. It does not give a reliable indication of pulse propa-
gation, even subject to the limitations outlined, if the system is unstable.t
This is true whether the instability is convective or nonconvective. We have
not attempted to prove this here but have used the examples of the two
previous sections to make this further limitation plausable. The wo-k plot
for the unstable string is shown in Fig. 10.1.11. Note that as k - k, the
group velocity approaches infinity. It would be unreasonable to conclude
that a pulse could be made to propagate with an arbitrarily large velocity.

With convection (Fig. 10.2.13) the insignificance of v, becomes even more
apparent. In this case we can select co or k to give any value of v,, positive,

* R. G. Brown and J.W. Nilsson, Introduction to Linear Systems Analysis, Wiley, New
York, 1962, p. 209.
t R. J. Briggs, Electron-StreamInteraction With Plasmas,M.I.T. Press, Cambridge, Mass.,
1964, p. 33.

10.3.2 Propagation
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negative, zero, and infinite! From this it is clear that the notion of a group
velocity must be used with care. Cases in which instability can develop make
this particularly clear. A pulse of finite extent contains all wavenumbers.
The group velocity is meaningful if the dynamics are dominated by signal
components confined to a small range of wavenumbers. The wavenumber
spectrum that is unstable tends to amplify and cannot be ignored.

10.3.3 Characteristics and the Velocity of Wavefronts

Wavefronts propagate along the characteristic lines in the x-t plane.
This is illustrated by considering a convecting string with a destabilizing
force, discussed in Section 10.2.3. The equation of motion (10.2.33) is

S+ U = [,f + k02j. (10.3.9)

A general discussion of how characteristics can be found for a given
differential equation would lead us afield.* Thus for our purposes we view
the characteristics as a convenient transformation of independent variables
from the coordinate system (x, t) to the new coordinate system (a, f)
according to the relations

at = x - (U + v,)t, (10.3.10)

f = x - (U - v,)t. (10.3.11)

The resulting simplification in the differential equation and its interpretation
and solution justify the transformation.

Note that the characteristic lines are the same as those used in Sections
9.1.1a and 10.2.1, in which nondispersive waves were studied.

To write (10.3.9) in terms of the new independent variables at and f, we
use (10.3.10) and (10.3.11) to evaluate the partial time derivative as

aý a a• a aa~ a a
at -- -+ - (U + v,) - (U - v) (10.3.12)

In a similar manner
a_ araoa aE ap a• a(

+ a+ (10.3.13)ax aaax a#ax aa a#

* For a general discussion of the method of characteristics see, for example, R. Courant and
K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York, 1948,
Chapters, II, III, and IV.
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initial value of I
known to be zero

initial value of 5
known

response

no response

t

Fig. 10.3.4 Grid of characteristics in the x-t plane for U > vs.

A repetition of the process and transformation of the derivatives in (10.3.9)
yields a2 k

+ - & = 0. (10.3.14)
ax a# 4

This form of the equation of motion makes it particularly clear why ý(cc) and
(fl) are both solutions when ke = 0.
In the x-t plane the C+ characteristics (o = constant) are parallel

straight lines with the slope U + v, and the C- characteristics (f3 = constant)
are parallel straight lines with slope U - v,. These characteristics fill the
x-t plane as illustrated in Fig. 10.3.4. In Fig. 10.3.5 the four intersections
of two pairs of closely spaced characteristics are shown. This configuration
can be used to obtain an approximate integral of (10.3.14). The solution
thus obtained yields both numerical answers and insight into how disturbances
propagate.

We assume that the displacements at points A, B, and D in Fig. 10.3.5 are

>+

Fig. 10.3.5 Intersections A, B, C, and D of two pairs of characteristics with U > v,.

10.3.3
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known and we wish to evaluate the displacement at point C (at some future
time at a downstream point) When aca and Af are small, we can write

(• (f + A+ , 8 + Af) - (a, fl + A _ e - ýc
AacAC A C

(10.3.15)

(+A, ) + f l)- A (10.3.16)

Continuation of this process one step further yields

a ( (alaoa)(x, f + Af) - (a/laoC)(oc, ) (10.3.17)
ao af A#

or

(, B) - ) - ( - (10.3.18))cA a( A 8 A#

The use of this approximate derivative in (10.3.14) and solution for ýc yield
the desired result*:

Ec = ýB + $D - $A(1 (- 4 .)Af. (10.3.19)

The solution to our problem $(x, t) or (oc, fl) can be viewed in a three-
dimensional plot as the height of a surface above the x-t or ac-f plane.
Hence the initial conditions $(x, 0) and (a8/at)(x, 0) give the height of the
surface and its slope in the t-direction near the x-axis In approximate terms
this is.equivalent to giving the value of e at the intersections of characteristics
on and adjacent to the x-axis, as shown in Fig. 10.3.4. From this initial data
(10.3.19) can be used to find $ at the next (third) vertical column of inter-
sections in the x-t plane of Fig. 10.3.4. These values, in turn, can be used
to calculate $ at the next vertical column of intersections.

In Fig. 10.3.4 we have indicated an initial pulse by an x at the characteristic
intersections; that is, $ has some finite value at these points. The initial dis-
placements are zero at intersections marked 0. The approximate solution
(10.3.19) of the equation of motion then shows that there is no deflection &
except possibly at the intersections marked. Hence the initial deflection in
the interval AB results in wavefronts propagating within the region in the
x-t plane bounded by the C+ characteristic originating at A and the C-
characteristic originating at B. Because U > v,, the initial disturbance
propagates downstream, as we assumed in Section 10.2.3.

* Note that the term ko2 //4 has been approximated by k. 2ýA/4. The error implicit in this
approximation becomes more and more significant as iterative use is made of (10.3.19).

I
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Fig. 10.3.6 Transient deflection following the initiation of a static pulse on a moving
unstable string (U = 3v, ). The deflection is convectively unstable.

It can be seen that as long as both families of characteristics go down-
stream as t increases, a driving condition (along the t-axis) that involves two
conditions on 4 is no different mathematically from the two initial con-
ditions along the x-axis considered here.

Our approximate solution for the equation of motion shows also that waves
are likely to grow. Consider the case in which points A, B, and D all have the
deflection 4 = o0 (the initial condition of a static, spatially uniform pulse
of height 4o). Then

= 4(1 + k A ),A (10.3.20)

and the amplitude has increased by the time the pulse reaches the point C.
A numerical example is shown in Fig. 10.3.6. For all values of t < 0 the

initial pulse has the same x-dependence, as shown; that is, the pulse is
initially static. For this transient solution seven grid points have been used to
describe the initial pulse and k, 2At Afl/4 = 0.1. The pulse grows in amplitude
but propagates downstream. At any given position x, the deflection remains
bounded. These are the salient features of a convective instability.

The leading edge of the pulse becomes inverted, as is expected from the
results found in Example 10.2.1 for an initially static pulse in a stable
situation but with U > v, (see Fig. 10.2.5).

10.4 DYNAMICS IN TWO DIMENSIONS

The techniques described for dealing with continuum electromechanical
interactions are not limited to a single space dimension, as implied by the

UI.-
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examples given. In this section we consider several cases that show how the
dispersion equation also accounts for motions that depend on two or three
dimensions.

10.4.1 Membrane Dynamics: Two-Dimensional Modes

A classic demonstration of wave propagation, as it depends on two dimen-
sions, is given by considering a membrane. In the absence of external surface
forces the equation of motion (as derived in Section 9.2) is

=- v,2(- + -- (10.4.1)

where

v, Q=)

Solutions to this equation have the general form

$ = Re ý ej (' t- ký - k
y

) , (10.4.2)

where we must now distinguish between the wavenumber k,, which indicates
the dependence on y, and k,, which indicates the x-dependence. Substitution
of (10.4.2) into (10.4.1) shows that ov is related to k, and k, by the
dispersion equation

02 = v, 2(k,2 + k, 2). (10.4.3)

Now suppose that the edges of the membrane at y = 0 and y = b are fixed,
as shown in Fig. 10.4.1; that is, deflections satisfy the boundary conditions

$(x, 0, t) = 0, (10.4.4)

ý(x, b, t) = 0. (10.4.5)

Any linear combination of solutions with the traveling waveform of
(10.4.2) and (ou,k,, k,) satisfying the dispersion equation (10.4.3) will satisfy
the equation of motion. In particular, we take the linear combination

-= Re [ 1 sin ky + ý2 cos k,y]e~( a"t- k
). (10.4.6)

Fig. 10.4.1 Membrane having static equilibrium in x-y plane.
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Here it is more convenient to write the complex exponential dependence on y
in terms of trigonometric functions because it is clear from (10.4.4) that

0• = 0. Moreover, if boundary condition (10.4.5) is to be satisfied,
nil.

k, - (10.4.7)
b

We have found that modes satisfying the transverse boundary conditions
take the form

ý(x, y, t) = Re ý, sin ( )e '(w- k- ), (10.4.8)

where in view of (10.4.7) the dispersion equation relating (w, k,) for any
given mode (n) is

o2 = oV[k.2 + (n1 . (10.4.9)

This expression takes the same form as the dispersion equation (10.1.7)
developed in Section 10.1.2, in which evanescent waves were studied. Hence
for each mode the dispersion equation takes the geometrical form shown in
Fig. 10.1.3. The cutoff frequency is [compare (10.1.7) and (10.4.9)]

W' 2= v, . (10.4.10)

Suppose that the membrane is driven at one end by a sinusoidal steady-
state excitation with a frequency w = wo. Then we have found that the response
is composed of an infinite number of waves, each having n half-wavelengths
in the y-direction. If wo < to, the waves in the x-direction are evanescent.
Hence for any given driving frequency a finite number (or, if w• < v,g/b,
none) of the waves will propagate (have real values of k,), whereas all others
will be evanescent.

The evanescent or cutoff waves are a consequence of the stiffening effect
of the transverse boundaries. Curvature of the membrane leads to an elastic
restoring force (remember the membrane is under the longitudinal and
transverse tension S). Because of the transverse boundaries, the membrane
cannot deform without incurring a curvature. Waves are cutoff if the elastic
restoring force resulting from this curvature (proportional to k, 2) outweighs
the effect of inertia.

If, in addition to the boundary conditions already imposed, the membrane
is fixed at x = 0 and x = a, it is appropriate to look for the natural modes or
eigenmodes of the membrane. This time we take a linear combination of
solutions in the form of (10.4.8) to determine that

&(x, y, t) = Re , sin sin ( e, (10.4.11)1. b) (a~x

--· I-_·__·IIYUII·IX--
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where k., has been made mtrta; hence the dispersion equation gives the
eigenfrequencies as

M = v + (10.4.12)

The indices (n, m) can have any integer values. Note, however, that if both
n and m are zero the solution is trivial, since (10.4.11) then shows that the
deflections are zero.

The eigenfrequencies of the membrane constrained on all of its edges have
the same physical significance as those of the simple string; for example, if
the membrane is driven in some manner by a sinusoidal steady-state forcing
function, there will be a resonance in the response at the eigenfrequencies, with
the membrane assuming the corresponding deflections given by (10.4.11).
Figure 10.4.2 is a graphic example of membrane modes n = 1. A soap film is
attached to a rectangular wire frame by surface tension. Each of the modes is
then excited by vibrating the frame by hand.

10.4.2 Moving Membrane: Mach Lines

We have seen that convection can have a marked effect on the dynamics of
one-dimensional continua. This is especially true if the motion is supersonic,
in the sense that the convection velocity (U) is greater than the propagation
velocity (v,) of small disturbances. The moving membrane provides an
opportunity to determine how these effects are displayed in two dimensions.

With the membrane moving in the x-direction with the velocity U, the
equation of motion is

+a =_ 2 +• (10.4.13)

Here we have replaced the time derivative with the convective derivative,
as justified in Section 10.2.

Now suppose we consider the case in which the Mach number M is greater
than unity,

M = U > 1, (10.4.14)
vs

and in which steady-state conditions prevail (alat = 0). Then (10.4.13)
becomes

(M - 1) a (10.4.15)a2•2 a- 2

This expression has the same familiar form as the wave equation. The time
dependence, however, has been replaced by a dependence on the second
dimension y. With this in mind, we expect that deformations ofthe membrane,



Fig. 10.4.2 Membrane motions illustrated by soap film on a vibrating wire frame. Pictures
from film "Soap Film Oscillations." Courtesy of A. M. Hudson, Occidental College and
Film Studio, Education Development Center, Inc., Newton, Mass.
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as they depend on (x, y), will assume the same wavelike character found in
Section 9.1. a.

Solution of (10.4.15) is completely analogous to the solution of the wave
equation in (x, t) coordinates. Reference to Section 9.1.la shows that we
have solutions

where
&= (O)+ _(),

a = X- M -2 1y,

fl = x + M2 - y.

(10.4.16)

(10.4.17)

(10.4.18)

The lines a = constant and # = constant are again the characteristic lines
along which we expect that the membrane can undergo abrupt deformations.
These lines along which the equivalent of wavefronts in the x-y space can
exist are referred to as Mach lines.* Their physical significance is more
apparent in the context of a simple example.

Example 10.4.1. A sheet ofmolten plastic is to be given the cross-sectional shape shown
in Fig. 10.4.3a. It is proposed that this be done by ejecting the molten plastic as a sheet

Fig. 10.4.3 (a) A membrane is constrained to have the shape shown at x = 0; (b) the
resulting deflections for M > 1.

* A. H. Shapiro, The Dynamics and Thermodynamics of Compressible FluidFlow, Ronald,
New York, 1953, Vol. I, p. 462.
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through an orifice in the shape of Fig. 10.4.3a. As long as the sheet is molten and thin, it is
reasonable to obtain an idea of the likely success of our method by modeling the sheet as a
membrane with M > 1 because the effect of surface tension, hence vs, is small. The
membrane is constrained at x = 0 so that ý(0, y) has the form shown in Fig. 10.4.3a and

(0, y) = 0. (a)

This problem then reduces to one that is essentially the same as that discussed in Example
9.1.2. The deformations of the membrane, as they depend on (x, y), are shown in Fig.
10.4.3b. The pulse that originates at x = 0 divides into two pulses that tend toward infinity
in the ±y-directions as x increases. On the basis of this finding, we expect that our technique
of forming the plastic would not be a good one unless the plastic could be made to solidify
within a distance short compared with that required for the pulses to separate from one
another.

10.4.3 A Kink Instability

Two-dimensional motions of a wire are very different from those of a
membrane and provide an excellent model for demonstrating electro-

mechanical coupling between propagating modes. A wire is shown in Fig.
10.4.4. It is now free to deflect in the x- or y-direction; hence we can, in
general, find the wire at the transverse position

g = u(z, t)ix + v(z, t)iy. (10.4.19)

Note that the motions still involve only two independent variables (z, t)

by contrast with the two-dimensional motions of the membrane. Now,

z

4 = uix +

u (z, t)

Fig. 10.4.4 A wire stretched along the z-axis.

10.4.3
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however, there are two dependent variables u(z, t) and v(z, t), the displace-
ments along the x- and y-axes, respectively.

We have already found that motions in the x- or y-direction are defined
by the string equation (Table 9.2). To linear terms deflections v in the y-
direction do not produce an x-directed force on the wire, and vice versa;
hence the string equation remains valid for two-dimensional motions. A
force equation for deflections in the x- and y-directions is

m -- f + S. (10.4.20)
at" az2

The external force per unit length S has components S. and S,. With S = 0
motions in the x- and y-directions are uncoupled. In either case they are
governed by a simple wave equation and disturbances propagate with the
velocity v, = Jf-.

We now use a magnetic field interaction to couple the motions in the x-
and y-directions. In the process the continuum model of a constant-current
constraint is illustrated.

The elastic wire is assumed to be conducting and is stretched between the
pole pieces ofa magnet (along the z-axis). As shown in Fig. 10.4.4, a current I
is carried by the wire. In static equilibrium this current is in the same direction
as an imposed magnetic flux density B0 ; hence there is no magnetic force per
unit length I x B0 . Any slight perturbation of the current path (the wire
position), however, will result in a radial component of current, and this
component produces an I x B force that tends to rotate the wire about the
z-axis. We see that motions of the wire cannot be purely in the x-z or y-z plane
but must involve all three space dimensions.

Our constant current approximation is implicit in the statement that the
current in the wire has the same direction as the wire. To linear terms we
write

au av
I = i- I + I+ ii. (10.4.21)

Here we have assumed that the cross section of the wire is small enough to
make currents induced by the motion negligible. In general, the motion
would produce currents that close on themselves in the x-y plane (eddy
currents), and they could be crossed with the imposed magnetic field to give
a transverse force on the wire. In Section 7.1 we obtained the condition that
the currents induced by the motion of a conductor (conductivity a) in a
magnetic field are small if

Rm = ( 1, (10.4.22)
2
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where in our case d is the diameter of the wire and w is the frequency of
vibration. Our constant current approximation is the limit of small R,.

We make the additional assumption that the magnetic flux density B0
imposed by the external magnet is much larger than the equilibrium flux
density generated by the current I. This allows us to compute the force on the
wire as

S = I x Bi, (10.4.23)
or from Eq. (10.4.21)

Sv au
S = Bo - i " - Bol -4 (10.4.24)

We now use these forces, and the components of (10.4.20) become

52u a2 5u B01 Sv
u v, + u  B v (10.4.25)

at, az2  m az'

a2v 2 a2 v 0l au- 0v B(10.4.26)
at" az' m az

This pair of equations is sufficient to describe the dynamics of the current-
carrying wire. As our intuition suggested, the magnetic field produces a
force in the x-direction [the last term in (10.4.25)] in proportion to the tilt
of the wire in the y-direction. The equations are now coupled. A motion in
one transverse direction cannot occur without involving a motion in the
other transverse direction. Put another way, waves polarized in either the
x- or y-directions are now coupled as they propagate along the z-axis, and we
expect that the coupling will affect the dynamics of both waves.

There are still two waves that propagate in each direction on the wire. We
can find them if we assume solutions with the variable separable form

u = Re [f expj(wt - kz)] and v = Re [z expj(wt - kz)].

The equations of motion are satisfied by these solutions if

(o' - v,-2 k 2) - 6•kBo = 0, (10.4.27)

i0(kBoI) + 3(2 -- v,2k2) = 0. (10.4.28)

These equations are homogeneous in the amplitudes fi and 0. Unless both
amplitudes are zero (not an interesting situation), the determinant of the
coefficients must be zero. It is concluded that cw and k are related by

(w• - v_,k2) = -_ (kBo . (10.4.29)

__·
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We have found the dispersion equation for waves on the wire, and the nature
of these waves is made evident by solving (10.4.29) for w2 :

S2= k2v"2 + (10.4.30)

Evidently four waves can propagate on the wire, which is consistent with what
we find if there is no magnetic field.

Equation 10.4.30 shows that one pair of waves (+ sign) has a phase
velocity that increases with the magnetic field, whereas the other pair has a
phase velocity that decreases with the magnetic field. The slower waves can,
in fact, be unstable if

B-I > k, (10.4.31)
os2m

for then o = -jac, where o is a real number. If all real values of k were
allowed by the boundary conditions, the wire would be unstable, no matter
how small B01, since there would always be a small enough wavenumber
(long enough wave) to satisfy the condition for instability. The boundary
conditions, however, are satisfied only by certain discrete values ofk, which we
enumerate shortly.

For the purpose of establishing the physical significance of the waves we
have found, consider the case in which the wire is excited in the sinusoidal
steady state at the (real) frequency wo.Then (10.4.29) is

k2 ± k ) = 0, (10.4.32)

and-we can solve this relation to find four possible wavenumbers. Using the
+ sign in (10.4.32), we obtain

k = k2, -kj, (10.4.33)

and using the minus sign we obtain

k = kj, -k 2, (10.4.34)

where kx and k2 are the positive real numbers

k __=_Bol FBlBok= B + L2m + -• 
!' (10.4.35)

k, = Bol F BoI2 2l]

k, = v2-m +B28 12 2 (10.4.36)

(Just to keep things straight, we assume for now that Bo > 0.) Note that k, >
k2. The dispersion equation (10.4.29), together with (10.4.27) or (10.4.28),
shows that

b = -- jf (10.4.37)
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x

Fig. 10.4.5 Polar coordinates of wire deflection. At a given position along the z-axis the
wire appears to rotate about it. The fast and slow waves have opposite directions of
rotation.

We must remember to use the upper sign with those waves with wavenumbers
given by (10.4.33) and the lower sign with those given by (10.4.34). Hence,
if we have a wave given by

u = Re [z+el't-k'l) + -bei'wt-k• ) + aiej(a)+kl) + -be J(wt+k2 Z)],

(10.4.38)
it follows from (10.4.37) that

v = Rej[ e3~(mt- k lz ) - e"(o' -k 2Z) - a ei( w+klz)+ bei(wt+k2z)].

(10.4.39)

The first two terms in these equations are waves with points of constant
phase propagating in the +z-direction. Because k, > k 2, the (a) wave
propagates more slowly than the (b) wave. The third and fourth terms are
similar waves propagating in the -z-direction.

To obtain some insight into the nature of these waves, consider the first
wave alone with ut = -juo. Then

4 = ui, + vi1 = uo[sin (cot - klz)i, + cos (oit - kiz)i,]. (10.4.40)

This deflection is easier to interpret if we consider the magnitude ý and angle
jY defined in Fig. 10.4.5. Then

= + 
(10.4.41)

= tan' () = cot - km.

At an instant in time the deflection given by this wave is a spiral that circles
the z-axis in the clockwise direction, as shown in Fig. 10.4.6b. Points of
constant phase advance in the z-direction with the velocity cokl. The phases
of the (b) wave, which propagates in the +z-direction, move more rapidly
with the velocity co/k 2. If we repeat the arguments that led to (10.4.41),

1_~_

10.4.3



Dynamics of Electromechanical Continua

Fig. 10.4.6 Waves propagating in the +z-direction: (a) fast wave with a wavelength
2r/k2 ;and (b) slow wave with a wavelength 2nr/k 1 .

using the u" wave, we obtain a spiral that at an instant in time circles the
z-axis in the counterclockwise direction (Fig. 10.4.6a). At any position z the
wire will circle the z-axis in the counterclockwise direction for the slow wave
and in the clockwise direction for the fast wave. Except that the propagation
is in the opposite direction, the u_ waves have the same physical appearance.

We address ourselves now to superimposing these four wave solutions to
find the free modes that satisfy the boundary conditions of Fig. 10.4.4 in
which the wire is fixed at z = 0 and at z = I. This is done by finding
the allowed eigenvalues k and then using (10.4.30) to find the associated
eigenfrequencies.

In a boundary value problem of this type it is easier to work with trigo-
nometric functions than with the complex exponentials. Hence we use the fact
that eio = cos 0 +j sin 0 and write the solution given by (10.4.38) as

u = Re {e ' t [A sin kz + B cos kz + C sin k2z + D cos k2z]}, (10.4.42)

where we have defined a new set of four constants as

A = j(tZ - Oza), C = j(01 - (4),
B = (a++ a!-), D = (a+b + a!_).
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In terms of these same constants the solution for the y-deflection becomes
(10.4.39)

v = -Re {el"'[A cos k1z - B sin k1z - C cos k2z + D sin kz]). (10.4.44)

The four constants are, of course, determined by the boundary conditions

u(O, t)= 0, v(O, t)= 0,
(10.4.45)

u(l, t) = 0, v(1, t) = O.

The advantage of the trigonometric form that we have used for our solution
is the simplicity of the relation among the constants that results from the
boundary conditions at z = 0. Because the sine functions are zero at the
origin,

B = -D, (10.4.46)
A =C.

The remaining two conditions at z = I require that

A(sin kl1 + sin k2l) + B(cos k1l - cos k2l) = 0,
(10.4.47)

A(cos k1l - cos k 21l) - B(sin kl1 + sin kOl) = 0.

Because A and B are not zero, the determinant of the coefficients must be
zero; that is,

(sin k1l + sin k21)2 + (cos kl1 - cos k 2l)
2 = 0. (10.4.48)

Recall that sin2 0 + cos2 0 = 1 and cos 0 cos y - sin 0 sin y = cos (0 + y),
and (10.4.48) reduces to the simple condition

cos 1(k, + k2) = 1. (10.4.49)

It follows that the argument l(k, + k2) must have values 0, 2w, 47w,...,
2n7, .... If kl + k2 is replaced by the sum of (10.4.35) and (10.4.36), we
obtain an expression that determines the eigenfrequencies wo,:

2o" = V.2 - ( )•,m n = 1, 2,..... (10.4.50)

We have left out the case n = 0 because this solution is trivial; that is,
there is no deflection when n = 0, as can be seen by taking the limiting case
in which there is no magnetic field.

We have found that if we set the wire into vibration in one of its natural
modes and then turn on the magnetic field and current, the frequency will
decrease in magnitude. As we raise the magnetic field, the equilibrium is
first unstable in the n = 1 mode. The system is unstable if

BI1 2w
> -. (10.4.51)

--
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Fig. 10.4.7 (a) Experiment in which a con-
ducting spring is stretched between pole
faces of a magnet. There is a vertical field
B0 and a current has just been applied to
the spring. (b) A moment later instability
occurs. (c)Predicted n = 1mode at point of
impending instability. (From Film "Com-
plex Waves I, Propagation, Evanescence
and Instability," produced by Education
Development Center, Inc., Newton, Mass.,
for the National Committee on Electrical
Engineering Films.)

Ix B

634
634

Courtesy of Education Development Center, Inc.  Used with permission.
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We have established that the value of k that should be used in (10.4.31) is
2rr/l.

Finally, it is worthwhile to see what the physical form of a natural mode
is. Given one of the constants, the other three can be determined from
(10.4.46) and (10.4.47). For this particular problem, however, the com-
patability condition (10.4.49) ensures that the coefficients of both A's and
B's in (10.4.47) are zero, as can be determined by using trigonometric
identities. This means that all conditions are satisfied if A and B are specified
independently. Consider the case in which A, hence [from (10.4.46)] C is
zero. Then, since B = - D, if we determine the time phase by taking B as a
real number, (10.4.42) and (10.4.44) become [here, use is made of (10.4.35)
and (10.4.36) and the fact that k, + k2 = 2nirl.]

u = -2B cos wt sin n sin B ,
1 2v,2m

(10.4.52)
v = 2B cos ot sin cos z.(10.4.52)

1 2VS2m

In terms of the polar variables of (10.4.41) and Fig. 10.4.5,

BoI
2 Z,

-- 2Vs2 m
(10.4.53)

= 2B cos cot sin

If we had used the constant A, rather than B, it would have shifted this
deflection by 90' about the z-axis.

A plot of (10.4.53) is shown in Fig. 10.4.7c for the first eigenmode with
BoI < 0. Note that because of the condition for instability (10.4.51) the
maximum twist y that the standing wave can undergo is 180'. Hence the
mode shown in Fig. 10.4.7c is at the point at which instability occurs for
the n = 1 mode.

The wave dynamics that we have found in this section are related to several
types of electromechanical interaction. The "pinch" confinement of a plasma,
proposed as a scheme for containing a controlled thermonuclear reaction,
suffers from an instability with the same kinked property as the one found
here.* The plasma is likely to behave more nearly as a perfectly conducting
medium or as one with a high rather than a low magnetic Reynolds number.
If, however, a current is passed through a liquid column of mercury (where
Rm is small) in the presence of an axial magnetic field, an instability with

* D. J. Rose and M. Clarke, Jr., Plasmasand ControlledFusion, M. I. T. Press and Wiley,
New York, 1961, p. 336.
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essentially the same features as that described here will result.* Often the
twisting motions that characterize the dynamics of the wire are found in
other electromechanical systems that involve an imposed magnetic field.
An example is the cyclotron wave of electron beam theory.t

10.5 DISCUSSION

In this chapter we have explored the consequences of continuum electro-
mechanical coupling with simple elastic continua. This has produced mathe-
matical analyses and physical interpretations of evanescent waves, absolute
instabilities, and waves and instabilities in convecting systems. The unifying
mathematical concept is the dispersion relation presented graphically in the
w-k plots.

Although our examples have been framed in terms of simple physical
situations, the phenomena we have discussed occur in the wide variety of
practical situations indicated in Section 10.0 and throughout the chapter.

PROBLEMS

10.1. The current-carrying wire described in Section 10.1.2 is attached to a pair of dashpots
with damping coefficients B and driven at x = -1, as shown in Fig. 10P.1.

(a) What is the boundary condition at x = 0?
(b) Compute the power absorbed in the dashpots for o < co, given the amplitude 0o

and other system parameters.

x

Fig. 10P.1

* Film Cartridge, produced by the National Committee for Fluid Mechanics Films,
Current-InducedInstabilityofa Mercury Jet, may be obtained from Education Development
Center, Inc., Newton, Mass. The instability seen in this film is convective, as would be the
case here if the string were in motion with U > v,.
f W. H. Louisell, Coupled Modes andParametricElectronics, Wiley, 1960, p. 51.

x
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10.2. Consider the same physical situation as that described in Section 10.1.2, except with
the current-carrying wire constrained at x = 0, so that (a8/ax)(O, t) = 0, and driven at
x = -1 such that (--1, t) = E cos wat.

(a) Find analytical expressions for C(x, t) with wc > w~ and c, < we.
(b) Sketch the results of (a) at an instant in time for cases in which wa = 0, w, < w,d

od > COC.
(c) How could the boundary condition at z = 0 be realized physically?

10.3. The ends of the spring shown in Fig. 10.1.2 and discussed in Sections 10.1.2 and
10.1.3 are constrained such that

- (0, t) = 0,

(-1, t) = 0.

(a) What are the eigenfrequencies of the spring with the current as shown in Fig.
10.1.2?

(b) What are these frequencies with I as shown in Fig. 10.1.9?
(c) What current I is required to make the equilibrium with & = 0 unstable? Give a

physical argument in support of your answer.

10.4. In Section 10.1.2 a current-carrying wire in a magnetic field was described by the
equation of motion

82& a28
m = f _x -_ Ibý + F(x, t), (a)

where Fis an externally applied force/unit length. We wish to consider the flow of power on
the string. Because F la/8t is the power input/unit length to the string, we can find a
conservation of power equation by multiplying (a) by a8/at. Show that

aW aP
Pin =-- + -, (b)

where Pin = F a8/at,

W = energy stored/unit length

4m + + Ib(2,

P = power flux

aý a8
= -f 8t-atx t

10.5. Waves on the string in Problem 10.4 have the form

E(x, t) = Re[t+ei(Wt-k) + .ei(wt+kz)J.

This problem makes a fundamental point of the way in which power is carried by ordinary
waves in contrast to evanescent waves. The instantaneous power P carried by the string is
given in Problem 10.4. Sinusoidal steady-state conditions prevail.

(a) Compute the time average power carried by the waves under the assumption that
k is real. Your answer should show that the powers carried by the forward and

·
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backward waves are independent; that is,

(P> = kf -

where 4* is the complex conjugate of ý.
(b) Show that if k =jfl,# real we obtain by contrast

KP) _=-_-

A single evanescent wave cannot carry power.
(c) Physically, how could it be argued that (b) must be the case rather than (a) for an

evanescent wave?

10.6. Use the results of Problem 10.4 to show that the group velocity vg = dowdk is given
by the ratio of the time average power to the time average energy/unit length: v, = (P)/( W).
Attention should be confined to the particular case of Problem 10.4 with F = 0.

10.7. A pair of perfectly conducting membranes has equilibrium spacing d from each other
and from parallel rigid walls (Fig. 10P.7). The membranes and walls support currents such

Ho

Fig. 10P.7

that with & = 0 and &z= 0 the static uniform magnetic field intensities H0 are as shown.
As the membranes deform, the flux through each of the three regions between conductors
is conserved.

(a) Assume that both membranes have tension S and mass/unit area am. Write two
equations of motion for X1and 5,.

(b) Assume that 5z = Re i, expj(wt - kx) and 25,= Re , expj(wt - kx) and find
the dispersion equation.

(c) Make an w-k plot to show complex values of k for real values of wto.Show which
branch of this plot goes with E1 =-- and which with 1-= -- . What are the
respective cutoff frequencies for these odd and even modes?

(d) The membranes are fixed at x = 0 and given the displacements 5,(-1, t) =
-- 2(-1, t) = Re expojwt. Find 1EandX 2 and sketch for wt = 0.

10.8. An electromagnetic wave can be transmitted through or reflected by a plasma,
depending on the frequency of the wave relative to the plasma frequency ow,. This phenom-
enon, which is fundamental to the propagation of radio signals in the ionosphere, is
illustrated by the following simple example of a cutoff wave. In dealing with electromagnetic
waves, we require that both the electric displacement current in Ampere's law and the
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Ex (z, t)
ov (z, 0)

Fig. 10P.8

magnetic induction in Faraday's law (see Section B.2.1) be accounted for. We consider
one-dimensional plane waves in which E = iE#(z, t) and H = i,H,(z, t).

(a) Show that Maxwell's equations require that

aE _ - pyH, 8aH, 8eoE,
az at az at

(b) The space is filled with plasma composed of equal numbers of ions and electrons.
Assume that the more massive ions remain fixed and that n, is the electron
number density, whereas e and m are the electronic charge and mass. Use a
linearized force equation to relate E. and v,,where v, is the average electron
velocity in the x-direction.

(c) Relate v. and J to linear terms.
(d) Use the equations of (a)-(c) to find the dispersion equation for waves in the

form of expj(cot - kz).

(e) Define the plasma frequency as cw, = Vn e2/com and describe the dynamics of a
wave with w < w,.

(f) Suppose that a wave in free space were to be normally incident on a layer of
plasma (such as the ionosphere). What would you expect to happen? (See
Problem 10.9 for a similar situation.)

10.9. A current-carrying string extends from x = -- oo to x = + oo. The section -1 <
x < 0 is subjected to a magnetic field with the distribution shown in Fig. 10.1.2. Hence the
sections of string to the left of z = -1 and to the right of x = 0 support ordinary waves,
whereas the section in between can support cutoff waves. Sinusoidal steady-state conditions

-1 0

No magnetic String in magnetic No magnetic
field field field

(a) (b)
Fig. 10P.9
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prevail, with waves incident from the left producing a deflection ý(-1, t) = Re oejwt,
w < wo.Assume that waves propagating to the right are completely absorbed at x -- co
so that in interval (b) $b = Re Ibe(wt--kbz), kI = co/v,.

(a) Find the attenuation factor &b]0for a wave passing through the cutoff section.
(b) What is 4b/•O as -I- 0? As I - co ?

10.10. A rigid straight rod supports a charge Q coulombs per unit length and is fixed. Just
below this rod an insulating string is stretched between fixed supports, as shown in Fig.

Fixed line charge Q
(coulombs/unit length)

d

.9 -q coulombs/unit length
I<l on a flexible string

Side view End view
Fig. 10P.10

O1P.10. This string, which has a tensionf and mass per unit length m,supports a charge per
unit length -q, where q << Q and both Q and q are positive.

(a) What should qQ be in order that the string have the static equilibrium E = 0 in
spite of the gravitational acceleration g ?

(b) What is the largest value of m that is consistent with the equilibrium of part (a)
being stable?

(c) How would you alter this physical situation to make the static equilibrium
stable even with m larger than given by (b)?

10.11. A wire with the mass/unit length mand tensionfis stretched between fixed supports,
as shown in Fig. 10P.11. The wire carries a current I and is subject to the gravitational

t'

Io

-U -- -

Fig. 10P.11

acceleration g. An adjacent wire carries the much larger current Io. Because I, >> I, the
magnetic field produced by I can be ignored.

(a) Given all other system parameters, what value of I is required to hold the wire
in static equilibrium with $' = 0?

(b) Write the differential equation of motion for vertical displacements ý'(x, t) of
the wire from a horizontal equilibrium at & = 0,.

(c) Under what conditions will the equilibrium be stable?
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Ft

-L
I

Fig. 10P.12

10.12. The conducting wire shown in Fig. 10P.12 is stressed by a transverse electric field
and hence has transverse displacements that satisfy the force equation:

m- =f f-- + Pý,

where m, f, and P are known constants. (P arises from the electric field.) The ends of the
string are constrained by springs, but are otherwise free to move in the transverse direction.

(a) Write the boundary conditions in terms of $(x, t) at a = 0 and x = 1.
(b) Find an expression for the natural frequencies and illustrate its solution

graphically. What effect does raising P have on the lowest eigenfrequency?
(c) What is the largest value of P consistent with stability in the limit where K - 0?

10.13. A pair of perfectly conducting membranes are stretched between rigid supports at
x = 0 and x = L, as shown in Fig. 10P.13. The membranes have the applied voltage Vo
with respect to each other and with respect to plane-parallel electrodes.

x=L

Fig. 10P.13

(a) Write a pair of differential equations in E,(x, t) and $2(x, t) which describe the
membrane motions. Assume that ýi and e2 are small enough to warrant linear-
ization and that the wavelengths are long enough that the membranes appear flat
to the electric field at any one value of x.

n~annsm~aan~nna~n

~ABanmaa~aa~aa~ao~in

-·

&X(, 0 
d

-

Vo

Vo

Vo=
x=•0O
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(b) Assume that
1= Re eij(at-kcx)

ý2 = Re i1ei(wt
- k z )

and find a dispersion equation relating w and k.
(c) Make an w-k plot showing the results of part (b), including imaginary values of

o for real values of k. (This equation should be biquadratic in w.)
(d) At what potential V0 will the static equilibrium , -=0 and 2 = 0 first become

unstable? Describe the mode of instability.

10.14. A spring is immersed in a viscous fluid so that damping forces of the type discussed
in Section 10.1.4 are important. The spring is fixed at x = 0 and x = -1. When t = 0, it is
static and released from the initial deflection shown.

(a) Find 6(x, t) in terms of the system normal modes and o0.
(b) Compare this physical situation with that developed in Section 7.1.1.

-l

S(x, 0)

0

Fig. 10P.14

10.15. A string with tension f and mass/unit length m moves in the x-direction with the
velocity U > I'flm. The string may be regarded as infinitely long. When t = 0, the string
has no deflection: [ý(x, 0) = 0]. It has, however, the transverse velocity (a/8t)(x, 0) given in
Fig. 10P.15. Find an analytical expression for $(x, t) and sketch it as a function of (x, t).
(Your sketch should have an appearance similar to that of Figs. 10.2.4 and 10.2.5.)

V,

•- (X,0)

x=0 x= b x
Fig.10P.15

10.16. A string with the tension f and mass/unit length m has an equilibrium velocity U
in the x-direction, where U > 'Xflm.At z = 0 it is constrained such that

W(0, t) = coscot,

(0, t) 0.

(a) Find the sinusoidal steady-state response E(x, t).
(b) Sketch the results of (a) at an instant in time.



Problems

(x, t)

111
x=
x=O

x= -1

Fig. 10P.17

10.17. A string with the longitudinal velocity U is excited sinusoidally at x = -1,
$(-1, t) = Re foe ji t , and constrained to zero deflection at x = 0 by pairs of rollers.

(a) Find the driven response ý(x, t) in the interval -1 < x < 0.
(b) What are the natural frequencies of the system? How do they depend on U?
(c) For what values of U are the results of (a) and (b) physically meaningful?

10.18. A wire under the tension fis closed on itself as shown. The resulting loop rotates
with the constant angular velocity Q. We consider deflections ýfrom a circular equilibrium
which have short wavelengths compared with the radius R. Hence each section of the wire
is essentially straight and effects of the curvature on the dynamics can be ignored.

(a) Show that the partial differential equation of motion is

m -+0' R2,2

where m, f, and R are given constants.
(b) For t < 0 the pulse of deflection (Fig. 10P.18b) is imposed externally and is

stationary when t = 0. At t = 0 this pulse is released. You are given that
OR = 2 /f/m. Plot the deflection M(0, t) for 0 < t < 27rR//f/m.

Wire under tension f
and with mass/unit

length m

to7

0 7r/4

(b)

Fig. 10P.18
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10.19. A string has the velocity U in the x-direction and is subject to arbitrary inputs of
energy from a distributed force F(x, t). Use the equation of motion to find a conservation

aW aP
of power equation in the form Pi, = • •. (See Problem 10.4.)at x'

10.20. Find the sinusoidal steady-state response for the conditions outlined in Problem
10.16 with the additional effect of a destabilizing force included (see Section 10.2.3).
Sketch the deflections at an instant in time under conditions in which the response takes the
form of an amplifying wave.

10.21. A perfectly conducting membrane with the tension S and mass per unit area a,, is
ejected from a nozzle along the x-axis with a velocity U. Gravity acts as shown in Fig.

Vo

V U
Fig. 10P.21

10P.21. A planar electrode above the membrane has the constant potential Vo relative to
the membrane.

(a) What value of Vo is required to make the membrane assume an equilibrium
parallel to the electrode?

(b) Now, under the conditions in (a), the membrane is excited at the frequency oid;
what is the lowest frequency ofexcitation that will not lead to spatially growing

deflections? Assume that U > VS/lo.
10.22. An elastic membrane with tension S and mass/unit area an is closed on itself, as
shown in Fig. 10P.22. When it is in a steady-state equilibrium, the membrane has radius R

Membrane tension S
m

th d into paper

Vo

Fig. 10P.22
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and rotates with angular velocity Q. Any point on its surface has an azimuthal velocity
U = OR. At a distance a to either side of the membrane are coaxial electrodes which, like
the membrane, are perfectly conducting. There is a constant potential difference V0 between
the membrane and each of the electrodes. The radius R is very large, so that effects of the
membrane and electrode curvatures can be ignored. In addition, wavelengths on the mem-
brane are much greater than a.

(a) Show that the equation of motion for membrane deflections takes the form

+ ý 8 a + me0 ; 0, and mr,=?

(b) Assume that solutions have the form E- Re ý expj(wt - mO) and find the
w-m relation. Plot complex en for real m and complex m for real w.

(c) Under what conditions is this system absolutely stable?

10.23. A pair of perfectly conducting membranes move in the x-direction with the velocity
U. The membranes have the applied voltage V0 with respect to one another and to plane-
parallel electrodes. They enter the region between the plates from rollers at a = 0.

Vo

S>x

x=0

Fig. 10P.23

(a) Write a pair of differential equations in 41(x, t) and 4s(x, t) to describe the
membrane motions. Assume that 4j and ,2are small enough to warrant
linearization and that the wavelengths are long enough for the membrane to
appear flat to the electric field at any one value of x.

(b) Assume that
4 = Re ý1ei(wt-k),

S= Re £ei(wt-kz)
and find a dispersion equation relating ewand k.

(c) Make an w-k plot to show the results of part (b), including complex values of
k for real values of w. This equation can be factored into two quadratic equations
for k. Assume that U > '/S/am.

(d) One of the quadratic factors in part (c) describes motions in which 1,(x, t) =
4(x, t), whereas the other describes motions in which 41(x, t) = - 2(, t).
Show that this is true by assuming first that $1= 4s and then that el = -- in
parts (a) and (b).

(e) Now suppose that the rollers at a = 0 are given the sinusoidal excitation
E4(0, t) = Re teimt = -$2(0, t), where j is the same real constant for each
excitation. Also, 0 = a4/lax = 8a/ax at x = 0. Find ýE(x, t) and $4(X,t).

(f) What voltage Vo is required to make the waves excited in part (e) amplify?
(g) Sketch the spatial dependence of 4,and $, at an instant in time with V0 = 0 and

with Vo large enough to produce amplifying waves.
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y

Fig. 10P.24

10.24. A perfectly conducting membrane with tension S and mass/unit area cr is fixed at
a = 0 and x = a and at y = 0 and y = b. Perfectly conducting plane-parallel electrodes
have an equilibrium distance s from the membrane and a potential Vo relative to the
membrane.

(a) What is the largest value of V0 that will still allow the membrane to be in a
state of stable static equilibrium? You may assume that a >> s and b > s.

(b) What are the natural frequencies of the membrane?
(c) Given that the membrane is stationary when t = 0 and that

where uo is the unit impulse and Jo is an arbitrary constant, find the response
(x, y, t).

10.25. A membrane with tension S and mass/unit area ao is fixed along its edges at y = 0
and y = a. It is also fixed along the edge x = b. At x = 0 it is driven and has the displace-
ment shown in Fig. 10P.25b. Find the sinusoidal steady-state driven response 6(x, y, t).

y

(b)

Fig. 10P.25
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End view

U

I

V0o 'lo

Side view
Fig. 10P.26

10.26. A pair of conductors, separated by a distance 2a, carries currents Io0 (amperes) in
the - z-direction, as shown in Fig. 10P.26. A conducting wire of mass density/unit length m
is stretched along the z-axis and carries a current I(I << I). Deflections of the wire from the
z-axis are given by u(z, t)ix + v(z, t)i,.

(a) Show that the equations of motion for the wire in the magnetic field have the
form

a2u a2 u
m -ý- =f -z - Ibu,

a2v a2v
m 2= f •z2 + Ibv,

under the assumption that deflections u and v are small. What is the constant b
in terms of I0 and a? What fundamental law requires that if Ibu appears with a
positive sign in the second equation it must appear with a negative sign in the
first equation?

(b) Consider solutions that have the form u = Re dej(c(t-kz) and v = Re iei(wt-kz)

and find the relationship between w-k for x and for y displacements. Make
dimensioned plots in each case of real and imaginary values of k for real values
of wo.Make dimensioned plots in each case of real and imaginary values of o
for real values of k. (Throughout this problem consider Io > 0, 1 > 0.)

(c) The wire is now fixed at z = 0 and, given the deflection

u(-l,t)ix + v(-l, t)i, = uo cos woti, + vo sin o•oti (wo is real).

Find u(z, t) and v(z, t).
(d) For what values of the currents (I, 10) will it be possible to establish the sinusoidal

steady-state solution of part (c)? For what values of wo, in terms off, m, and I,
will the wire support evanescent waves as x-deflections and remain stable?

(e) The frequency wo is set wo = (r/21)'/f1m. Sketch the peak deflections u and v
as functions of z for several values of I(starting with I = 0). Summarize in words
how the deflections will change as the current I is raised.
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10.27. This is a continuation of Problem 10.26. Now the wire has an equilibrium velocity
U along the z-axis with U > <-jim.

(a) Write the differential equations for the deflections u(z, t) and v(z, t), including
the effect of U.

(b) Consider solutions u = Re flei(wt-kz) and v = Re bel(0t- kz ) and find the
relationship between co-k for x and y displacements. Make dimensioned plots
in each case of real and imaginary values of k for real values of wo.Make
dimensioned plots in each case of real and imaginary values of acfor real
values of k (Io > 0, I > 0).

(c) Why would it not be possible to impose the boundary conditions of part (c) in
Problem 10.26 to solve this problem? The wire is driven at z = 0 by the de-
flection u(0, t)i, + v(0, t)iy = uo cos Wo0ti + v0 sin woti, with the slopes

au av
(0,t) = 0, (0,t) = 0.

Find u(z, t) and v(z, t).
(d) For a given driving frequency wosketch the peak deflections u and v as functions

of z for several values of I (starting with I = 0). Summarize in words how the
deflections would change as the current I is raised.

(e) How would you devise an experiment to demonstrate the results of the preceding
parts (i.e., what would you use as the moving "wire" and how would you excite
it?).
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10.28. An elastic membrane with constant tension S has a circular cylindrical equilibrium
geometry, as shown in Fig. 10P28a. It is supported at z = 0 and at z = I by circular rigid
tubes. Intuitively, we expect that the membrane will collapse inward if the pressure inside
the membrane (pi) is not larger than that outside (po). We could imagine stopping up one of
the supporting tubes and pushing a cork into the end of the other tube just far enough to
maintain the required pressure difference, as might be done in extruding a hollow section of
molten glass or plastic or a soap film.

(a) Show that for a static equilibrium to exist with 0 = 0, Pi - Po = SIR.
(b) There is, of course, no guarantee that if we establish this pressure difference the

equilibrium will be stable. To examine this question write a linearized equation
of radial force equilibrium for a small section of the membrane. The sketches of
surface deformation shown in Fig. 10P.28b should be helpful in writing the force
per unit area due to the tension S. Your equation of motion should be

32$ Si 1 52$ a52$S-=SI- + - + I
m 

t
2  R

2  
R

2 O*2 Sz
2

(c) Under what conditions is the equilibrium stable?
(d) Describe the lowest modes of oscillation for the membrane.
(e) Reconsider Problem 10.22, taking into account the effect of the curvature.

aý

Fig. 10P.29

10.29. A membrane has the velocity U > v, in the x-direction, as described in Section
10.4.2. At x = 0, $ = 0, and 5/Sax has the distribution shown.
Assume that the membrane is infinitely wide in the y-direction.

(a) Find and sketch $(x, y) for x > 0. Assume that M 2 = 2.
(b) Describe how you would physically produce the postulated excitation at x = 0.

10.30. A membrane moves with the velocity U > v, in the x-direction (see Section 10.4.2).
Its edges are prevented from undergoing transverse motions along boundaries at y = 0 and

d

U

Membrane enters
undetected

Fig. 10P.30
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y = d, except for the segment 0 < x < a, where the membrane is constrained to have the
constant amplitude o0 . Assume that M 2 = 2 and find the resulting deflection ý(x, t). Your
answer should be presented as a sketch similar to Fig. 10.4.3.

10.31. Plot the w-k relation (10.4.30) for the example described in Section 10.4.3 to show
complex w for real k and complex k for real wo. Indicate the modes (fast wave or slow wave)
represented by each branch of the curves.

10.32. Consider the example of Section 10.4.3, but with the wire having a longitudinal
velocity U > vs.

(a) Find the revised dispersion equation.
(b) Sketch the wo-k relation and show complex values of k for real values of o.

(c) Describe the response of the wire to a sinusoidal excitation.




