1 Introduction

Recommended

Problems

P1.1

Evaluate each of the following expressions for the complex number $z=\frac{1}{2} e^{j \pi / 4}$.
(a) $R e\{z\}$
(b) $\operatorname{Im}\{z\}$
(c) $|z|$
(d) $\Varangle z$
(e) z^{*} (* denotes complex conjugation)
(f) $\boldsymbol{z}+\boldsymbol{z}^{*}$

P1.2

Let z be an arbitrary complex number.
(a) Show that

$$
\operatorname{Re}\{z\}=\frac{z+z^{*}}{2}
$$

(b) Show that

$$
j \operatorname{Im}\{z\}=\frac{z-z^{*}}{2}
$$

P1.3

Using Euler's formula, $e^{j \theta}=\cos \theta+j \sin \theta$, derive the following relations:
(a) $\cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}$
(b) $\sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}$

P1.4
(a) Let $z=r e^{j \theta}$. Express in polar form (i.e., determine the magnitude and angle for) the following functions of z :
(i) z^{*}
(ii) z^{2}
(iii) $j z$
(iv) $z z^{*}$
(v) $\frac{z}{z^{*}}$
(vi) $\frac{1}{z}$
(b) Plot in the complex plane the vectors corresponding to your answers to Problem $\mathrm{P} 1.4 \mathrm{a}(\mathrm{i})$-(vi) for $r=\frac{2}{3}, \theta=\pi / 6$.

P1.5

Show that

$$
\left(1-e^{j \alpha}\right)=2 \sin \left(\frac{\alpha}{2}\right) e^{j \mid(\alpha-\pi) / 2\rfloor}
$$

P1.6
For $x(t)$ indicated in Figure P1.6, sketch the following:
(a) $x(-t)$
(b) $x(t+2)$
(c) $x(2 t+2)$
(d) $x(1-3 t)$

P1.7
Evaluate the following definite integrals:
(a) $\int_{0}^{a} e^{-2 t} d t$
(b) $\int_{2}^{\infty} e^{-3 t} d t$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

