1 Introduction

Solutions to

Recommended Problems

S1.1

(a) Using Euler's formula,

$$
e^{j \pi / 4}=\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}
$$

Since $\boldsymbol{z}=\frac{1}{2} e^{j \pi / 4}$,

$$
R e\{z\}=\frac{1}{2} R e\left\{\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}\right\}=\frac{\sqrt{2}}{4}
$$

(b) Similarly,

$$
\operatorname{Im}\{z\}=\frac{1}{2} \operatorname{Im}\left\{\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}\right\}=\frac{\sqrt{2}}{4}
$$

(c) The magnitude of z is the product of the magnitudes of $\frac{1}{2}$ and $e^{j \pi / 4}$. However, $\left|\frac{1}{2}\right|=\frac{1}{2}$, while $\left|e^{j \theta}\right|=1$ for all θ. Thus,

$$
|z|=\left|\frac{1}{2} e^{j \pi / 4}\right|=\left|\frac{1}{2}\right|\left|e^{j \pi / 4}\right|=\frac{1}{2} \cdot 1=\frac{1}{2}
$$

(d) The argument of z is the sum of the arguments of $\frac{1}{2}$ and $e^{j \pi / 4}$. Since $\Varangle \frac{1}{2}=0$ and $\Varangle e^{j \theta}=\theta$ for all θ,

$$
\Varangle z=\Varangle\left(\frac{1}{2} e^{j \pi / 4}\right)=\Varangle \frac{1}{2}+\Varangle e^{j \pi / 4}=0+\frac{\pi}{4}=\frac{\pi}{4}
$$

(e) The complex conjugate of z is the product of the complex conjugates of $\frac{1}{2}$ and $e^{j \pi / 4}$. Since $\frac{1}{2}{ }^{*}=\frac{1}{2}$ and $\left(e^{j \theta}\right)^{*}=e^{-j \theta}$ for all θ,

$$
z^{*}=\left(\frac{1}{2} e^{j \pi / 4}\right)^{*}=\frac{1}{2}\left(e^{j \pi / 4}\right)^{*}=\frac{1}{2} e^{-j \pi / 4}
$$

(f) $z+z^{*}$ is given by

$$
z+z^{*}=\frac{1}{2} e^{j \pi / 4}+\frac{1}{2} e^{-j \pi / 4}=\frac{e^{j \pi / 4}+e^{-j \pi / 4}}{2}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}
$$

Alternatively,

$$
\operatorname{Re}\{z\}=\frac{z+z^{*}}{2}, \quad \text { or } \quad z+z^{*}=2 \operatorname{Re}\{z\}=2 \frac{\sqrt{2}}{4}=\frac{\sqrt{2}}{2}
$$

(a) Express z as $z=\sigma+j \Omega$, where $\operatorname{Re}\{z\}=\sigma$ and $\operatorname{Im}\{z\}=\Omega$. Recall that z^{*} is the complex conjugate of z, or $z^{*}=\sigma-j \Omega$. Then

$$
\frac{z+z^{*}}{2}=\frac{(\sigma+j \Omega)+(\sigma-j \Omega)}{2}=\frac{2 \sigma+0}{2}=\sigma
$$

(b) Similarly,

$$
\frac{z-z^{*}}{2}=\frac{(\sigma+j \Omega)-(\sigma-j \Omega)}{2}=\frac{0+2 j \Omega}{2}=j \Omega
$$

(a) Euler's relation states that $e^{j \theta}=\cos \theta+j \sin \theta$. Therefore, $e^{-j \theta}=\cos (-\theta)+$ $j \sin (-\theta)$. But, $\cos (-\theta)=\cos \theta$ and $\sin (-\theta)=-\sin \theta$. Thus, $e^{-j \theta}=\cos \theta-$ $j \sin \theta$. Substituting,

$$
\frac{e^{j \theta}+e^{-j \theta}}{2}=\frac{(\cos \theta+j \sin \theta)+(\cos \theta-j \sin \theta)}{2}=\frac{2 \cos \theta}{2}=\cos \theta
$$

(b) Similarly,

$$
\frac{e^{j \theta}-e^{-j \theta}}{2 j}=\frac{(\cos \theta+j \sin \theta)-(\cos \theta-j \sin \theta)}{2 j}=\frac{2 j \sin \theta}{2 j}=\sin \theta
$$

S1.4
(a) (i) We first find the complex conjugate of $\boldsymbol{z}=r e^{j \theta}$. From Euler's relation, $r e^{j \theta}=r \cos \theta+j r \sin \theta=z$. Thus,

$$
z^{*}=r \cos \theta-j r \sin \theta=r \cos \theta+j r(-\sin \theta)
$$

But $\cos \theta=\cos (-\theta)$ and $-\sin \theta=\sin (-\theta)$. Thus,

$$
z^{*}=r \cos (-\theta)+j r \sin (-\theta)=r e^{-j \theta}
$$

(ii) $\quad z^{2}=\left(r e^{j \theta}\right)^{2}=r^{2}\left(e^{j \theta}\right)^{2}=r^{2} e^{j 2 \theta}$
(iii) $j z=e^{j \pi / 2} r e^{j \theta}=r e^{j \mid \theta+(\pi / 2)]}$
(iv) $z z^{*}=\left(r e^{j \theta}\right)\left(r e^{-j \theta}\right)=r^{2} e^{j(\theta-\theta)}=r^{2} \cdot 1$
(v) $\frac{z}{z^{*}}=\frac{r e^{j \theta}}{r e^{-j \theta}}=e^{j(\theta+\theta)}=e^{j 2 \theta}$
(vi) $\frac{1}{z}=\frac{1}{r e^{j \theta}}=\frac{1}{r} e^{-j \theta}$
(b) From part (a), we directly plot the result in Figure S1.4-1, noting that for $\boldsymbol{z}=$ $r e^{j \theta}, r$ is the radial distance to the origin and θ is the angle counterclockwise subtended by the vector with the positive real axis.

Figure S1.4-1
(i)

Figure S1.4-2
(ii)

Figure S1.4-3
(iii)

Figure S1.4-4
(iv)

Figure S1.4-5
(v)

Figure S1.4-6
(vi)

Figure S1.4-7

This problem shows a useful manipulation. Multiply by $e^{+j \alpha / 2} e^{-j \alpha / 2}=1$, yielding

$$
e^{+j \alpha / 2} e^{-j \alpha / 2}\left(1-e^{j \alpha}\right)=e^{j \alpha / 2}\left(e^{-j \alpha / 2}-e^{j \alpha / 2}\right)
$$

Now we note that $2 j \sin (-x)=-2 j \sin x=e^{-x}-e^{x}$. Therefore,

$$
1-e^{j \alpha}=e^{j \alpha / 2}\left(-2 j \sin \frac{\alpha}{2}\right)
$$

Finally, we convert $-j$ to complex exponential notation, $-j=e^{-j \pi / 2}$. Thus,

$$
1-e^{j \alpha}=e^{j \alpha / 2}\left(2 e^{-j \pi / 2} \sin \frac{\alpha}{2}\right)=2 \sin \frac{\alpha}{2} e^{j(\alpha-\pi) / 2]}
$$

There are three things a linear scaling of the form $x(a t+b)$ can do: (i) reverse direction $\Rightarrow a$ is negative; (ii) stretch or compress the time axis $\Rightarrow|a| \neq 1$; (iii) time shifting $\Rightarrow b \neq 0$.
(a) This is just a time reversal.

Figure S1.6-1
Note: Amplitude remains the same. Also, reversal occurs about $t=0$.
(b) This is a shift in time. At $t=-2$, the vertical portion occurs.

Figure S1.6-2
(c) A scaling by a factor of 2 occurs as well as a time shift.

Figure S1.6-3

Note: $a>1$ induces a compression.
(d) All three effects are combined in this linear scaling.

Figure S1.6-4

This should be a review of calculus.
(a) $\int_{0}^{a} e^{-2 t} d t=-\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{a}=-\frac{1}{2} e^{-2 a}-\left[-\frac{1}{2} e^{-2(0)}\right]$

$$
=\frac{1}{2}-\frac{1}{2} e^{-2 a}
$$

(b) $\int_{2}^{\infty} e^{-3 t} d t=-\left.\frac{1}{3} e^{-3 t}\right|_{2} ^{\infty}=\lim _{t \rightarrow \infty}\left(-\frac{1}{3} e^{-3 t}\right)+\frac{1}{3} e^{-3(2)}$

Therefore,

$$
\int_{2}^{\infty} e^{-3 t} d t=0+\frac{1}{3} e^{-6}=\frac{1}{3} e^{-6}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

