2 Signals and Systems: Part I

Solutions to

Recommended Problems

$\mathbf{S 2 . 1}$
(a) We need to use the relations $\omega=2 \pi f$, where f is frequency in hertz, and $T=2 \pi / \omega$, where T is the fundamental period. Thus, $T=1 / f$.

$$
\begin{equation*}
f=\frac{\omega}{2 \pi}=\frac{\pi / 3}{2 \pi}=\frac{1}{6} \mathrm{~Hz}, \quad T=\frac{1}{f}=6 \mathrm{~s} \tag{i}
\end{equation*}
$$

(ii) $f=\frac{3 \pi / 4}{2 \pi}=\frac{3}{8} \mathrm{~Hz}, \quad T=\frac{8}{3} \mathrm{~s}$

$$
\begin{equation*}
f=\frac{3 / 4}{2 \pi}=\frac{3}{8 \pi} \mathrm{~Hz}, \quad T=\frac{8 \pi}{3} \mathrm{~s} \tag{iii}
\end{equation*}
$$

Note that the frequency and period are independent of the delay τ_{x} and the phase θ_{x}.
(b) We first simplify:

$$
\cos (\omega(t+\tau)+\theta)=\cos (\omega t+\omega \tau+\theta)
$$

Note that $\omega \tau+\theta$ could also be considered a phase term for a delay of zero. Thus, if $\omega_{x}=\omega_{y}$ and $\omega_{x} \tau_{x}+\theta_{x}=\omega_{y} \tau_{y}+\theta_{y}+2 \pi k$ for any integer $k, y(t)=x(t)$ for all t.

$$
\begin{equation*}
\omega_{x}=\omega_{y}, \quad \omega_{x} \tau_{x}+\theta_{x}=2 \pi, \quad \omega_{y} \tau_{y}+\theta_{y}=\frac{\pi}{3}(1)-\frac{\pi}{3}=0+2 \pi k \tag{i}
\end{equation*}
$$

Thus, $x(t)=y(t)$ for all t.
(ii) Since $\omega_{x} \neq \omega_{y}$, we conclude that $x(t) \neq y(t)$.
(iii)
$\omega_{x}=\omega_{y}, \quad \omega_{x} \tau_{x}+\theta_{x}=\frac{3}{4}\left(\frac{1}{2}\right)+\frac{1}{4} \neq \frac{3}{4}(1)+\frac{3}{8}+2 \pi k$
Thus, $x(t) \neq y(t)$.
$\mathbf{S 2 . 2}$
(a) To find the period of a discrete-time signal is more complicated. We need the smallest N such that $\Omega N=2 \pi k$ for some integer $k>0$.

$$
\begin{equation*}
\frac{\pi}{3} N=2 \pi k \Rightarrow N=6, \quad k=1 \tag{i}
\end{equation*}
$$

(ii) $\frac{3 \pi}{4} N=2 \pi k \Rightarrow N=8, \quad k=2$
(iii) $\frac{3}{4} N=2 \pi k \Rightarrow$ There is no N such that $\frac{3}{4} N=2 \pi k$, so $x[n]$ is not periodic.
(b) For discrete-time signals, if $\Omega_{x}=\Omega_{y}+2 \pi k$ and $\Omega_{x} \tau_{x}+\theta_{x}=\Omega_{y} \tau_{y}+\theta_{y}+2 \pi k$, then $x[n]=y[n]$.
(i) $\frac{\pi}{3} \neq \frac{8 \pi}{3}+2 \pi k$ (the closest is $k=-1$), so $x[n] \neq y[n]$
(ii) $\Omega_{x}=\Omega_{y}, \frac{3 \pi}{4}(2)+\frac{\pi}{4}=\frac{3 \pi}{4}-\pi+2 \pi k, \quad k=1$, so $x[n]=y[n]$
(iii) $\Omega_{x}=\Omega_{y}, \frac{3}{4}(1)+\frac{1}{4}=\frac{3}{4}(0)+1+2 \pi k, \quad k=0, \quad x[n]=y[n]$
(a) (i) This is just a shift to the right by two units.

Figure S2.3-1
(ii) $\quad x[4-n]=x[-(n-4)]$, so we flip about the $n=0$ axis and then shift to the right by 4 .

Figure S2.3-2
(iii) $\quad x[2 n]$ generates a new signal with $x[n]$ for even values of n.

Figure S2.3-3
(b) The difficulty arises when we try to evaluate $x[n / 2]$ at $n=1$, for example (or generally for n an odd integer). Since $x\left[\frac{1}{2}\right]$ is not defined, the signal $x[n / 2]$ does not exist.

By definition a signal is even if and only if $x(t)=x(-t)$ or $x[n]=x[-n]$, while a signal is odd if and only if $x(t)=-x(-t)$ or $x[n]=-x[-n]$.
(a) Since $x(t)$ is symmetric about $t=0, x(t)$ is even.
(b) It is readily seen that $x(t) \neq x(-t)$ for all t, and $x(t) \neq-x(-t)$ for all t; thus $x(t)$ is neither even nor odd.
(c) Since $x(t)=-x(-t), x(t)$ is odd in this case.
(d) Here $x[n]$ seems like an odd signal at first glance. However, note that $x[n]=$ $-x[-n]$ evaluated at $n=0$ implies that $x[0]=-x[0]$ or $x[0]=0$. The analogous result applies to continuous-time signals. The signal is therefore neither even nor odd.
(e) In similar manner to part (a), we deduce that $x[n]$ is even.
(f) $x[n]$ is odd.
(a) Let $\operatorname{Ev}\{x[n]\}=x_{e}[n]$ and $\operatorname{Od}\{x[n]\}=x_{o}[n]$. Since $x_{e}[n]=y[n]$ for $n \geq 0$ and $x_{e}[n]=x_{e}[-n], x_{e}[n]$ must be as shown in Figure S2.5-1.

Figure S2.5-1
Since $x_{o}[n]=y[n]$ for $n<0$ and $x_{o}[n]=-x_{o}[-n]$, along with the property that $x_{o}[0]=0, x_{o}[n]$ is as shown in Figure S2.5-2.

Figure S2.5-2
Finally, from the definition of $\operatorname{Ev}\{x[n]\}$ and $\operatorname{Od}\{x[n]\}$, we see that $x[n]=x_{e}[n]+$ $x_{o}[n]$. Thus, $x[n]$ is as shown in Figure S2.5-3.

Figure S2.5-3
(b) In order for $w[n]$ to equal 0 for $n<0, O d\{w[n]\}$ must be given as in Figure S2.5-4.

Figure S2.5-4
Thus, $w[n]$ is as in Figure S2.5-5.

Figure S2.5-5
$\mathbf{S 2 . 6}$
(a) For $\alpha=-\frac{1}{2}, \alpha^{n}$ is as shown in Figure S2.6-1.

Figure S2.6-1
(b) We need to find a β such that $e^{\beta n}=\left(-e^{-1}\right)^{n}$. Expressing -1 as $e^{j \pi}$, we find

$$
e^{\beta n}=\left(e^{j \pi} e^{-1}\right)^{n} \quad \text { or } \quad \beta=-1+j \pi
$$

Note that any $\beta=-1+j \pi+j 2 \pi k$ for k an integer will also satisfy the preceding equation.
(c) $\left.\operatorname{Re}\left\{e^{(-1+j \pi) t}\right\}\right|_{t=n}=e^{-n} \operatorname{Re}\left\{e^{j \pi n}\right\}=e^{-n} \cos \pi n$, $\left.\operatorname{Im}\left\{e^{(-1+j \pi) t}\right\}\right|_{t=n}=e^{-n} \operatorname{Im}\left\{e^{j \pi n}\right\}=e^{-n} \sin \pi n$

Since $\cos \pi n=(-1)^{n}$ and $\sin \pi n=0, \operatorname{Re}\{x(t)\}$ and $\operatorname{Im}\{y(t)\}$ for t an integer are shown in Figures S2.6-2 and S2.6-3, respectively.

Figure S2.6-2

Figure S2.6-3

First we use the relation $(1+j)=\sqrt{2} e^{j \pi / 4}$ to yield

$$
x(t)=\sqrt{2} \cdot \sqrt{2} e^{j \pi / 4} e^{j \pi / 4} e^{(-1+j 2 \pi) t}=2 e^{j \pi / 2} e^{(-1+j 2 \pi) t}
$$

(a) $\operatorname{Re}\{x(t)\}=2 e^{-t} \operatorname{Re}\left\{e^{j \pi / 2} e^{j 2 \pi t}\right\}=2 e^{-t} \cos \left(2 \pi t+\frac{\pi}{2}\right)$

Figure S2.7-1
(b) $\operatorname{Im}\{x(t)\}=2 e^{-t} \operatorname{Im}\left\{e^{j \pi / 2} e^{j 2 \pi t}\right\}=2 e^{-t} \sin \left(2 \pi t+\frac{\pi}{2}\right)$

Figure S2.7-2
(c) Note that $x(t+2)+x^{*}(t+2)=2 \operatorname{Re}\{x(t+2)\}$. So the signal is a shifted version of the signal in part (a).

Figure S2.7-3
(a) We just need to recognize that $\alpha=3 / a$ and $C=2$ and use the formula for S_{N}, $N=6$.

$$
\sum_{n=0}^{5} 2\left(\frac{3}{a}\right)^{n}=2 \frac{1-\left(\frac{3}{a}\right)^{6}}{1-\left(\frac{3}{a}\right)}
$$

(b) This requires a little manipulation. Let $m=n-2$. Then

$$
\sum_{n=2}^{6} b^{n}=\sum_{m=0}^{4} b^{m+2}=b^{2} \sum_{m=0}^{4} b^{m}=b^{2} \frac{1-b^{5}}{1-b}
$$

(c) We need to recognize that $\left(\frac{2}{3}\right)^{2 n}=\left(\frac{4}{9}\right)^{n}$. Thus,

$$
\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{2 n}=\sum_{n=0}^{\infty}\left(\frac{4}{9}\right)^{n}=\frac{1}{1-\frac{4}{9}} \quad \text { since }\left|\frac{4}{9}\right|<1
$$

(a) The sum $x(t)+y(t)$ will be periodic if there exist integers n and k such that $n T_{1}=k T_{2}$, that is, if $x(t)$ and $y(t)$ have a common (possibly not fundamental) period. The fundamental period of the combined signal will be $n T_{1}$ for the smallest allowable n.
(b) Similarly, $x[n]+y[n]$ will be periodic if there exist integers n and k such that $n N_{1}=k N_{2}$. But such integers always exist, a trivial example being $n=N_{2}$ and $k=N_{1}$. So the sum is always periodic with period $n N_{1}$ for n the smallest allowable integer.
(c) We first decompose $x(t)$ and $y(t)$ into sums of exponentials. Thus,

$$
\begin{aligned}
& x(t)=\frac{1}{2} e^{j(2 \pi t / 3)}+\frac{1}{2} e^{-j(2 \pi t / 3)}+\frac{e^{j(16 \pi t / 3)}}{j}-\frac{e^{-j(16 \pi t / 3)}}{j} \\
& y(t)=\frac{e^{j \pi t}}{2 j}-\frac{e^{-j \pi t}}{2 j}
\end{aligned}
$$

Multiplying $x(t)$ and $y(t)$, we get

$$
\begin{aligned}
z(t)= & \frac{1}{4 j} e^{j(5 \pi / 3) t}-\frac{1}{4 j} e^{-j(\pi / 3) t}+\frac{1}{4 j} e^{j(\pi / 3) t}-\frac{1}{4 j} e^{-j(5 \pi / 3) t} \\
& -\frac{1}{2} e^{j(19 \pi / 3) t}+\frac{1}{2} e^{j(13 \pi / 3) t}+\frac{1}{2} e^{-j(13 \pi / 3) t}-\frac{1}{2} e^{-j(19 \pi / 3) t}
\end{aligned}
$$

We see that all complex exponentials are powers of $e^{j(\pi / 3) t}$. Thus, the fundamental period is $2 \pi /(\pi / 3)=6 \mathrm{~s}$.
(a) Let $\sum_{n=-\infty}^{\infty} x[n]=S$. Define $m=-n$ and substitute

$$
\sum_{m=-\infty}^{\infty} x[-m]=-\sum_{m=-\infty}^{\infty} x[m]
$$

since $x[m]$ is odd. But the preceding sum equals $-S$. Thus, $S=-S$, or $S=0$.
(b) Let $y[n]=x_{1}[n] x_{2}[n]$. Then $y[-n]=x_{1}[-n] x_{2}[-n]$. But $x_{1}[-n]=-x_{1}[n]$ and $x_{2}[-n]=x_{2}[n]$. Thus, $y[-n]=-x_{1}[n] x_{2}[n]=-y[n]$. So $y[n]$ is odd.
(c) Recall that $x[n]=x_{e}[n]+x_{o}[n]$. Then

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} x^{2}[n] & =\sum_{n=-\infty}^{\infty}\left(x_{e}[n]+x_{o}[n]\right)^{2} \\
& =\sum_{n=-\infty}^{\infty} x_{e}^{2}[n]+2 \sum_{n=-\infty}^{\infty} x_{e}[n] x_{o}[n]+\sum_{n=-\infty}^{\infty} x_{0}^{2}[n]
\end{aligned}
$$

But from part (b), $x_{e}[n] x_{o}[n]$ is an odd signal. Thus, using part (a) we find that the second sum is zero, proving the assertion.
(d) The steps are analogous to parts (a)-(c). Briefly,
(i) $S=\int_{t=-\infty}^{\infty} x_{0}(t) d t=\int_{r=-\infty}^{\infty} x_{o}(-r) d r$
$=-\int_{r=-\infty}^{\infty} x_{o}(r) d r=-S$, or $S=0, \quad$ where $r=-t$
(ii)

$$
\begin{aligned}
y(t) & =x_{o}(t) x_{e}(t), \\
y(-t) & =x_{o}(-t) x_{e}(-t)=-x_{o}(t) x_{e}(t) \\
& =-y(t), \quad y(t) \text { is odd }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\int_{t=-\infty}^{\infty} x^{2}(t) d t & =\int_{-\infty}^{\infty}\left(x_{e}(t)+x_{o}(t)\right)^{2} d t \\
& =\int_{-\infty}^{\infty} x_{e}^{2}(t) d t+2 \int_{-\infty}^{\infty} x_{e}(t) x_{o}(t) d t+\int_{-\infty}^{\infty} x_{0}^{2}(t) d t
\end{aligned}
$$

while $2 \int_{-\infty}^{\infty} x_{e}(t) x_{o}(t) d t=0$
(a) $x[n]=e^{j \omega_{0} n T}=e^{j 2 \pi n T / T_{o}}$. For $x[n]=x[n+N]$, we need

$$
x[n+N]=e^{j 2 \pi(n+N) T / T_{o}}=e^{\left.j \mid 2 \pi n\left(T / T_{o}\right)+2 \pi N\left(T / T_{o}\right)\right]}=e^{j 2 \pi n T / T_{o}}
$$

The two sides of the equation will be equal only if $2 \pi N\left(T / T_{o}\right)=2 \pi k$ for some integer k. Therefore, T / T_{o} must be a rational number.
(b) The fundamental period of $x[n]$ is the smallest N such that $N\left(T / T_{o}\right)=N(p / q)$ $=k$. The smallest N such that $N p$ has a divisor q is the least common multiple (LCM) of p and q, divided by p. Thus,

$$
N=\frac{\operatorname{LCM}(p, q)}{p} ; \quad \text { note that } k=\frac{\operatorname{LCM}(p, q)}{q}
$$

The fundamental frequency is $2 \pi / N$, but $n=\left(k T_{o}\right) / T$. Thus,

$$
\Omega=\frac{2 \pi}{N}=\frac{2 \pi T}{k T_{o}}=\frac{1}{k} \omega_{o} T=\frac{q}{\operatorname{LCM}(p, q)} \omega_{o} T
$$

(c) We need to find a value of m such that $x[n+N]=x\left(n T+m T_{o}\right)$. Therefore, $N=m\left(T_{o} / T\right)$, where $m\left(T_{o} / T\right)$ must be an integer, or $m(q / p)$ must be an integer. Thus, $m q=\operatorname{LCM}(p, q), m=\operatorname{LCM}(p, q) / q$.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

