3 Signals and Systems: Part II

Solutions to

Recommended Problems

S3. 1
(a)

Figure S3.1-1
(b)

Figure S3.1-2
(c)

(d)

Figure S3.1-4
(e)

Figure S3.1-5
(f)

Figure S3.1-6

S3.2
(1) h
(2) d
(3) b
(4) e
(5) a, f
(6) None

S3.3
(a) $x[n]=\delta[n-1]-2 \delta[n-2]+3 \delta[n-3]-2 \delta[n-4]+\delta[n-5]$
(b) $s[n]=-u[n+3]+4 u[n+1]-4 u[n-2]+u[n-4]$

S3.4
We are given Figure S3.4-1.

Figure S3.4-1
$x(-t)$ and $x(1-t)$ are as shown in Figures S3.4-2 and S3.4-3.

Figure S3.4-2

(a) $u(t+1)-u(t-2)$ is as shown in Figure S3.4-4.

Hence, $x(1-t)[u(t+1)-u(t-2)]$ looks as in Figure S3.4-5.

Figure S3.4-5
(b) $-u(2-3 t)$ looks as in Figure S3.4-6.

Figure S3.4-6
Hence, $u(t+1)-u(2-3 t)$ is given as in Figure S3.4-7.

Figure S3.4-7
So $x(1-t)[u(t+1)-u(2-3 t)]$ is given as in Figure S3.4-8.

Figure S3.4-8

S3.5
(a) $y[n]=x^{2}[n]+x[n]-x[n-1]$
(b) $y[n]=x^{2}[n]+x[n]-x[n-1]$
(c) $y[n]=\mathrm{H}[x[n]-x[n-1]]$
$=x^{2}[n]+x^{2}[n-1]-2 x[n] x[n-1]$
(d) $y[n]=\mathrm{G}\left[x^{2}[n]\right]$

$$
=x^{2}[n]-x^{2}[n-1]
$$

(e) $y[n]=\mathrm{F}[x[n]-x[n-1]]$

$$
=2(x[n]-x[n-1])+(x[n-1]-x[n-2])
$$

$$
y[n]=2 x[n]-x[n-1]-x[n-2]
$$

(f) $y[n]=\mathrm{G}[2 x[n]+x[n-1]]$

$$
\begin{aligned}
& =2 x[n]+x[n-1]-2 x[n-1]-x[n-2] \\
& =2 x[n]-x[n-1]-x[n-2]
\end{aligned}
$$

(a) and (b) are equivalent. (e) and (f) are equivalent.

Memoryless:

(a) $y(t)=(2+\sin t) x(t)$ is memoryless because $y(t)$ depends only on $x(t)$ and not on prior values of $x(t)$.
(d) $y[n]=\sum_{k=-\infty}^{n} x[n]$ is not memoryless because $y[n]$ does depend on values of $x[\cdot]$ before the time instant n.
(f) $y[n]=\max \{x[n], x[n-1], \ldots, x[-\infty]\}$ is clearly not memoryless.

Linear:
(a)

$$
\begin{aligned}
y(t) & =(2+\sin t) x(t)=T[x(t)], \\
T\left[a x_{1}(t)+b x_{2}(t)\right] & =(2+\sin t)\left[a x_{1}(t)+b x_{2}(t)\right] \\
& =a(2+\sin t) x_{1}(t)+b(2+\sin t) x_{2}(t) \\
& =a T\left[x_{1}(t)\right]+b T\left[x_{2}(t)\right]
\end{aligned}
$$

Therefore, $y(t)=(2+\sin t) x(t)$ is linear.
(b)

$$
\begin{aligned}
y(t) & =x(2 t)=T[x(t)] \\
T\left[a x_{1}(t)+b x_{2}(t)\right] & =a x_{1}(2 t)+b x_{2}(t) \\
& =a T\left[x_{1}(t)\right]+b T\left[x_{2}(t)\right]
\end{aligned}
$$

Therefore, $y(t)=x(2 t)$ is linear.
(c)

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty} x[k]=T[x[n]], \\
T\left[a x_{1}[n]+b x_{2}[n]\right] & =a \sum_{k=-\infty}^{\infty} x_{1}[k]+b \sum_{k=-\infty}^{\infty} x_{2}[k] \\
& \left.=a T\left[x_{1}[n]\right]+b T\left[x_{2} n\right]\right]
\end{aligned}
$$

Therefore, $y[n]=\sum_{k=-\infty}^{\infty} x[k]$ is linear.
(d) $y[n]=\sum_{k=-\infty}^{n} x[k]$ is linear (see part c).
(e)

$$
\begin{aligned}
y(t) & =\frac{d x(t)}{d t}=T[x(t)], \\
T\left[a x_{1}(t)+b x_{2}(t)\right] & =\frac{d}{d t}\left[a x_{1}(t)+b x_{2}(t)\right] \\
& =a \frac{d x_{1}(t)}{d t}+b \frac{d x_{2}(t)}{d t}=a T\left[x_{1}(t)\right]+b T\left[x_{2}(t)\right]
\end{aligned}
$$

Therefore, $y(t)=d x(t) / d t$ is linear.
(f)

$$
\begin{aligned}
y[n] & =\max \{x[n], \ldots, x[-\infty]\}=T[x[n]] \\
T\left[a x_{1}[n]+b x_{2}[n]\right] & =\max \left\{a x_{1}[n]+b x_{2}[n], \ldots, a x_{1}[-\infty]+b x_{2}[-\infty]\right\} \\
& \neq a \max \left\{x_{1}[n], \ldots, x_{1}[-\infty]\right\}+b \max \left\{x_{2}[n], \ldots, x_{2}[-\infty]\right\}
\end{aligned}
$$

Therefore, $y[n]=\max \{x[n], \ldots, x[-\infty]\}$ is not linear.

Time-invariant:
(a)

$$
\begin{aligned}
y(t) & =(2+\sin t) x(t)=T[x(t)], \\
T\left[x\left(t-T_{0}\right)\right] & =(2+\sin t) x\left(t-T_{0}\right) \\
& \neq y\left(t-T_{0}\right)=\left(2+\sin \left(t-T_{0}\right)\right) x\left(t-T_{0}\right)
\end{aligned}
$$

Therefore, $y(t)=(2+\sin t) x(t)$ is not time-invariant.
(b)

$$
y(t)=x(2 t)=T[x(t)],
$$

$T\left[x\left(t-T_{0}\right)\right]=x\left(2 t-2 T_{0}\right) \neq x\left(2 t-T_{0}\right)=y\left(t-T_{0}\right)$
Therefore, $y(t)=x(2 t)$ is not time-invariant.
(c)

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty} x[k]=T[x[n]], \\
T\left[x\left[n-N_{0}\right]\right] & =\sum_{k=-\infty}^{\infty} x\left[k-N_{0}\right]=y\left[n-N_{0}\right]
\end{aligned}
$$

Therefore, $y[n]=\sum_{k=-\infty}^{\infty} x[k]$ is time-invariant.
(d)

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{n} x[k]=T[x[n]], \\
T\left[x\left[n-N_{0}\right]\right] & =\sum_{k=-\infty}^{n} x\left[k-N_{0}\right]=\sum_{l=-\infty}^{n-N_{0}} x[l]=y\left[n-N_{0}\right]
\end{aligned}
$$

Therefore, $y[n]=\sum_{k=-\infty}^{n} x[k]$ is time-invariant.
(e)

$$
\begin{aligned}
y(t) & =\frac{d x(t)}{d t}=T[x(t)] \\
T\left[x\left(t-T_{0}\right)\right] & =\frac{d}{d t} x\left(t-T_{0}\right)=y\left(t-T_{0}\right)
\end{aligned}
$$

Therefore, $y(t)=d x(t) / d t$ is time-invariant.
Causal:
(b) $y(t)=x(2 t)$,
$y(1)=x(2)$
The value of $y(\cdot)$ at time $=1$ depends on $x(\cdot)$ at a future time $=2$. Therefore, $y(t)=x(2 t)$ is not causal.
(d) $y[n]=\sum_{k=-\infty}^{n} x[k]$

Yes, $y[n]=\sum_{k=-\infty}^{n} x[k]$ is causal because the value of $y[\cdot]$ at any instant n depends only on the previous (past) values of $x[\cdot]$.

Invertible:

(b) $y(t)=x(2 t)$ is invertible; $x(t)=y(t / 2)$.
(c) $y[n]=\sum_{k=-\infty}^{\infty} x[k]$ is not invertible. Summation is not generally an invertible operation.
(e) $y(t)=d x(t) / d t$ is invertible to within a constant.

Stable:
(a) If $|x(t)|<M,|y(t)|<(2+\sin t) M$. Therefore, $y(t)=(2+\sin t) x(t)$ is stable.
(b) If $|x(t)|<M,|x(2 t)|<M$ and $|y(t)|<M$. Therefore, $y(t)=x(2 t)$ is stable.
(d) If $|x[k]| \leq M,|y[n]| \leq M \cdot \sum_{-\infty}^{n} 1$, which is unbounded. Therefore, $y[n]=$ $\sum_{-\infty}^{n} x[k]$ is not stable.
(a) Since H is an integrator, H^{-1} must be a differentiator.

$$
\begin{aligned}
\mathrm{H}^{-1}: & y(t)=\frac{d x(t)}{d t} \\
\mathrm{G}: & y(t)=x(2 t) \\
\mathrm{G}^{-1}: & y(t)=x(t / 2)
\end{aligned}
$$

(b)

Figure S3.7

Solutions to

Optional Problems

S3.8
(a) $x_{2}(t)=x_{1}(t)-x_{1}(t-2)$

Figure S3.8-1
(b) $x_{3}(t)=x_{1}(t)+x_{1}(t+1)$

Figure S3.8-2
(c) $x(t)=u(t-1)-u(t-2)$

Figure S3.8-3
(d) $y[n]=3 y_{1}[n]-2 y_{2}[n]+2 y_{3}[n]$

Figure S3.8-4
(e) $y_{2}[n]=y_{1}[n]+y_{1}[n-1]$

Figure S3.8-5
$y_{3}[n]=y_{1}[n+1]$

Figure S3.8-6
(f) From linearity,

$$
\begin{aligned}
& y_{1}(t)=\pi+6 \cos (2 t)-47 \cos (5 t)+\sqrt{e} \cos (6 t) \\
& x_{2}(t)=\frac{1+t^{10}}{1+t^{2}}=\sum_{n=0}^{4}\left(-t^{2}\right)^{n}
\end{aligned}
$$

So $y_{2}(t)=1-\cos (2 t)+\cos (4 t)-\cos (6 t)+\cos (8 t)$.
(a) (i) The system is linear because

$$
\begin{aligned}
T\left[a x_{1}(t)+b x_{2}(t)\right] & =\sum_{n=-\infty}^{\infty}\left[a x_{1}(t)+b x_{2}(t)\right] \delta(t-n T) \\
& =a \sum_{n=-\infty}^{\infty} x_{1}(t) \delta(t-n T)+b \sum_{n=-\infty} x_{2}(t) \delta(t-n T) \\
& =a T\left[x_{1}(t)\right]+b T\left[x_{2}(t)\right]
\end{aligned}
$$

(ii) The system is not time-invariant. For example, let $x_{1}(t)=\sin (2 \pi t / T)$. The corresponding output $y_{1}(t)=0$. Now let us shift the input $x_{1}(t)$ by $\pi / 2$ to get

$$
x_{2}(t)=\sin \left(\frac{2 \pi t}{T}+\frac{\pi}{2}\right)=\cos \left(\frac{2 \pi t}{T}\right)
$$

Now the output

$$
y_{2}(t)=\sum_{n=-\infty}^{+\infty} \delta(t-n T) \neq y_{1}\left(t+\frac{\pi}{2}\right)=0
$$

(b) $y(t)=\sum_{n=-\infty}^{\infty} x(t) \delta(t-n T)$

$$
=\sum_{n=-\infty}^{\infty} \cos (2 \pi t) \delta(t-n T)
$$

Figure S3.9-1

Figure S3.9-2

Figure S3.9-3

Figure S3.9-4

Figure S3.9-5

Figure S3.9-6
(c) $y(t)=\sum_{n=-\infty}^{\infty} e^{i} \cos (2 \pi t) \delta(t-n T)$

Figure S3.9-7

Figure S3.9-8

Figure S3.9-9

Figure S3.9-10

Figure S3.9-11

Figure S3.9-12

S3.10
(a) True. To see that the system is linear, write

$$
\begin{aligned}
y_{2}(t)=T_{2}\left[T_{1}[x(t)]\right] & \left.\triangleq{ }^{\triangleq} T x(t)\right], \\
T_{1}\left[a x_{1}(t)+b x_{2}(t)\right] & =a T_{1}\left[x_{1}(t)\right]+b T_{1}\left[x_{2}(t)\right] \\
& \Rightarrow T_{2}\left[T_{1}\left[a x_{1}(t)+b x_{2}(t)\right]\right]=T_{2}\left[a T_{1}\left[x_{1}(t)\right]+b T_{1}\left[x_{2}(t)\right]\right] \\
& =a T_{2}\left[T_{1}\left[x_{1}(t)\right]\right]+b T_{2}\left[T_{1}\left[x_{2}(t)\right]\right] \\
& =a T\left[x_{1}(t)\right]+b T\left[x_{2}(t)\right]
\end{aligned}
$$

We see that the system is time-invariant from

$$
\begin{aligned}
T_{2}\left[T_{1}[x(t-T)]\right] & =T_{2}\left[y_{1}(t-T)\right] \\
& =y_{2}(t-T) \\
T[x(t-T)] & =y_{2}(t-T)
\end{aligned}
$$

(b) False. Two nonlinear systems in cascade can be linear, as shown in Figure S3.10. The overall system is identity, which is a linear system.

Figure S3.10
(c) $y[n]=z[2 n]=w[2 n]+\frac{1}{2} w[2 n-1]+\frac{1}{4} w[2 n-2]$

$$
=x[n]+\frac{1}{4} x[n-1]
$$

The system is linear and time-invariant.
(d) $y[n]=z[-n]=a w[-n-1]+b w[-n]+c w[-n+1]$

$$
=a x[n+1]+b x[n]+c x[n-1]
$$

(i) The overall system is linear and time-invariant for any choice of a, b, and c.
(ii) $a=c$
(iii) $a=0$

S3.11
(a) $y[n]=x[n]+x[n-1]=T[x[n]]$. The system is linear because

$$
\begin{aligned}
T\left[a x_{1}[n]+b x_{2}[n]\right] & =a x_{1}[n]+a x_{1}[n-1]+b x_{2}[n]+b x_{2}[n-1] \\
& =a T\left[x_{1}[n]\right]+b T\left[x_{2}[n-1]\right]
\end{aligned}
$$

The system is time-invariant because

$$
\begin{aligned}
y[n] & =x[n]+x[n-1]=T[x[n]] \\
T[x[n-N]] & =x[n-N]+x[n-1-N] \\
& =y[n-N]
\end{aligned}
$$

(b) The system is linear, shown by similar steps to those in part (a). It is not time-invariant because

$$
\begin{aligned}
T[x[n-N]] & =x[n-N]+x[n-N-1]+x[0] \\
& \neq y[n-N]=x[n-N]+x[n-N-1]+x[-N]
\end{aligned}
$$

(a) To show that causality implies the statement, suppose

$$
\begin{aligned}
& \left.x_{1}(t) \rightarrow y_{1}(t) \quad \text { (input } x_{1}(t) \text { results in output } y_{1}(t)\right), \\
& x_{2}(t) \rightarrow y_{2}(t),
\end{aligned}
$$

where $y_{1}(t)$ and $y_{2}(t)$ depend on $x_{1}(t)$ and $x_{2}(t)$ for $t<t_{0}$. By linearity,

$$
x_{1}(t)-x_{2}(t) \rightarrow y_{1}(t)-y_{2}(t)
$$

If $x_{1}(t)=x_{2}(t)$ for $t<t_{0}$, then $y_{1}(t)=y_{2}(t)$ for $t<t_{0}$. Hence, if $x(t)=0$ for $t<t_{0}, y(t)=0$ for $t<t_{0}$.
(b) $y(t)=x(t) x(t+1)$,
$x(t)=0 \quad$ for $t<t_{0} \Rightarrow y(t)=0, \quad$ for $t<t_{0}$
This is a nonlinear, noncausal system.
(c) $y(t)=x(t)+1$ is a nonlinear, causal system.
(d) We want to show the equivalence of the following two statements:

Statement 1 (S1): The system is invertible.
Statement 2 (S2): The only input that produces the output $y[n]=0$ for all n is $x[n]=0$ for all n.
To show the equivalence, we will show that

$$
\begin{aligned}
& \text { S2 false } \Rightarrow \text { S1 false } \quad \text { and } \\
& \text { S1 false } \Rightarrow \text { S2 false }
\end{aligned}
$$

S2 false \Rightarrow S1 false: Let $x[n] \neq 0$ produce $y[n]=0$. Then $c x[n] \Rightarrow y[n]=0$.
S1 false \Rightarrow S2 false: Let $x_{1} \Rightarrow y_{1}$ and $x_{2} \Rightarrow y_{2}$. If $x_{1} \neq x_{2}$ but $y_{1}=y_{2}$, then $x_{1}-x_{2} \neq 0$ but $y_{1}-y_{1}=0$.
(e) $y[n]=x^{2}[n]$ is nonlinear and not invertible.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

