6 Systems Represented by Differential and Difference Equations

Solutions to

Recommended Problems

$\mathbf{S 6 . 1}$
We substitute $y_{3}(t)=\alpha y_{1}(t)+\beta y_{2}(t)$ into the homogeneous differential equation

$$
\frac{d y_{3}(t)}{d t}+a y_{3}(t)=\frac{d}{d t}\left[\alpha y_{1}(t)+\beta y_{2}(t)\right]+\alpha\left[\alpha y_{1}(t)+\beta y_{2}(t)\right]
$$

Since differentiation is distributive, we can express the preceding equation as

$$
\begin{aligned}
\alpha \frac{d y_{1}(t)}{d t}+\beta \frac{d y_{2}(t)}{d t}+a \alpha y_{1}(t)+a \beta y_{2}(t) & \\
& =\alpha\left[\frac{d y_{1}(t)}{d t}+a y_{1}(t)\right]+\beta\left[\frac{d y_{2}(t)}{d t}+a y_{2}(t)\right]
\end{aligned}
$$

However, since both $y_{1}(t)$ and $y_{2}(t)$ satisfy the homogeneous differential equation, the right side of the equation is zero. Therefore,

$$
\frac{d y_{3}(t)}{d t}+a y_{3}(t)=0
$$

S6.2
(a) We are assuming that $y(t)=e^{s t}$. Substituting in the differential equation yields

$$
\frac{d^{2}}{d t^{2}}\left(e^{s t}\right)+3 \frac{d}{d t}\left(e^{s t}\right)+2 e^{s t}=0
$$

so that

$$
s^{2} e^{s t}+3 s e^{s t}+2 e^{s t}=e^{s t}\left(s^{2}+3 s+2\right)=0
$$

For any finite $s, e^{s t}$ is not zero. Therefore, s must satisfy

$$
0=s^{2}+3 s+2=(s+1)(s+2), \quad s=-1,-2
$$

(b) From the answer to part (a), we know that both $y_{1}(t)=e^{-t}$ and $y_{2}(t)=e^{-2 t}$ satisfy the homogeneous LCCDE. Therefore,

$$
y_{3}(t)=K_{1} e^{-t}+K_{2} e^{-2 t}
$$

for any constants K_{1}, K_{2}, will also satisfy the equation.

S6.3
(a) Assuming $y(t)$ of the form

$$
y(t)=K e^{s t}
$$

we substitute into the LCCDE, setting $x[n]=0$:

$$
0=\frac{d y(t)}{d t}+\frac{1}{2} y(t)=K s e^{s t}+K \frac{1}{2} e^{s t}=K e^{s t}\left(s+\frac{1}{2}\right)
$$

Since $K \neq 0$ and $e^{s t} \neq 0, s$ must equal $-\frac{1}{2}$. K then becomes arbitrary, so the family of $y(t)$ that satisfies the homogeneous equation is

$$
y(t)=K e^{-t / 2}
$$

(b) Substituting into eq. (P6.3-1) $y_{1}(t)=A e^{-t}$ for $t>0$, we find

$$
\frac{d y_{1}(t)}{d y}+\frac{1}{2} y_{1}(t)=-A e^{-t}+\frac{1}{2} A e^{-t}=e^{-t}, \quad t>0
$$

Since e^{-t} never equals zero, we can divide it out. This gives us an equation for A,

$$
-A+\frac{A}{2}=1 \quad \text { as } A=-2
$$

(c) For $y_{1}(t)=\left(2 e^{-t / 2}-2 e^{-t}\right) u(t)$,

$$
\begin{aligned}
\frac{d y_{1}(t)}{d t} & = \begin{cases}{\left[2\left(-\frac{1}{2}\right) e^{-t / 2}-2(-1) e^{-t}\right],} & t>0 \\
0, & t \leq 0,\end{cases} \\
\frac{d y_{1}(t)}{d t}+\frac{1}{2} y_{1}(t) & = \begin{cases}\left(-e^{-t / 2}+2 e^{-t}\right)+\frac{1}{2}\left(2 e^{-t / 2}-2 e^{-t}\right)=e^{-t}, & t>0 \\
0, & t<0\end{cases} \\
& =x(t)
\end{aligned}
$$

S6.4
(a) Note that since $y[n]$ is delayed by one sample by the delay element, we can label the block diagram as shown in Figure S6.4.

Figure S6.4
Thus $y[n]=x[n]-\frac{1}{2} y[n-1]$, or $y[n]+\frac{1}{2} y[n-1]=x[n]$.
(b) Since the system is assumed to be causal, $y[n]$ must be zero before a nonzero input is applied. Therefore, $x[n]=0$ for $n<0$, and consequently $y[n]$ must be zero for $n<0$. Thus, $y[-5]=0$.
(c) Since $x[n]=\delta[n]=0$ for $n<0, y[n]$ must also equal zero for $n<0$. For $n=0$, we have $y[0]+\frac{1}{2} y[-1]=1$ or, substituting for $y[n]$,

$$
\begin{aligned}
K \alpha^{0} u[0]+\frac{1}{2} K \alpha^{-1} u[-1] & =1, \\
K+\frac{1}{2} \cdot 0 & =1, \quad \text { or } \quad K=1
\end{aligned}
$$

For $n>0$, we have

$$
y[n]+\frac{1}{2} y[n-1]=0 \quad \text { or } \quad \alpha^{n}+\frac{1}{2} \alpha^{n-1}=0
$$

since $K=1$. Thus, α must equal $-\frac{1}{2}$ for $\alpha^{n}+\frac{1}{2} \alpha^{n-1}$ to equal 0 for all $n>0$. Therefore, $y[n]=\left(-\frac{1}{2}\right)^{n} u[n]$. Substituting into the left side of the difference equation, we have

$$
\begin{aligned}
\left(-\frac{1}{2}\right)^{n} u[n]+\frac{1}{2}\left(-\frac{1}{2}\right)^{n-1} u[n-1] & =\left(-\frac{1}{2}\right)^{n} u[n]-\left(-\frac{1}{2}\right)^{n} u[n-1] \\
& = \begin{cases}1, & n=0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

(d) We can successively calculate $y[n]$ by noting that $y[-1]=0$ and that

$$
y[n]=-\frac{1}{2} y[n-1]+\delta[n]
$$

So

$$
\begin{array}{ll}
n=0, & y[0]=-\frac{1}{2} \cdot 0+1=1 \\
n=1, & y[1]=-\frac{1}{2} \cdot 1+0=-\frac{1}{2} \\
n=2, & y[2]=-\frac{1}{2} \cdot\left(-\frac{1}{2}\right)+0=\frac{1}{4}
\end{array}
$$

We see that these correspond to the answer to part (c).
(a) Performing the manipulations in inverse order to that done in the lecture (see Figure S6.5-1) yields the system shown in Figure S6.5-2.

Figure S6.5-1

Figure S6.5-2

Since the system is linear and time-invariant, we can exchange the order of the two boxes A and B, yielding the direct form I shown in Figure S6.5-3.

Figure S6.5-3
(b) From the direct form I, we see that the intermediate variable $q[n]$ is related to $x[n]$ by

$$
q[n]=x[n]-2 x[n-1]
$$

The signal $y[n]$ can be described in terms of $q[n]$ and $y[n-1]$ as

$$
y[n]=q[n]+\frac{1}{3} y[n-1]
$$

Combining the two equations yields

$$
\begin{aligned}
& y[n]=\frac{1}{3} y[n-1]+x[n]-2 x[n-1], \quad \text { or } \\
& y[n]-\frac{1}{3} y[n-1]=x[n]-2 x[n-1]
\end{aligned}
$$

(c) (i) Figure S6.5-4 shows that if we concentrate on the right half of the diagram of direct form II given in Figure P6.5, we see the relation

$$
y[n]=r[n]-2 r[n-1]
$$

Figure S6.5-4
(ii) Similarly, Figure S6.5-5 shows that if we concentrate on the first half of the diagram, we obtain the relation

$$
r[n]=x[n]+\frac{1}{3} r[n-1], \quad \text { or } \quad x[n]=r[n]-\frac{1}{3} r[n-1]
$$

Figure S6.5-5
(iii) From the two equations obtained in parts (i) and (ii),

$$
\begin{equation*}
x[n]=r[n]-\frac{1}{3} r[n-1] \tag{S6.5-1}
\end{equation*}
$$

and

$$
\begin{equation*}
y[n]=r[n]-2 r[n-1], \tag{S6.5-2}
\end{equation*}
$$

we solve for $r[n]$, obtaining

$$
r[n]=\frac{6}{5} x[n]-\frac{1}{5} y[n]
$$

Substituting $r[n]$ into eq. (S6.5-1), we have

$$
x[n]=\frac{6}{5} x[n]-\frac{1}{5} y[n]-\frac{1}{3}\left\{\frac{6}{5} x[n-1]-\frac{1}{5} y[n-1]\right\},
$$

which simplifies to

$$
y[n]-\frac{1}{3} y[n-1]=x[n]-2 x[n-1]
$$

(a) Integrating both sides of eq. (P6.6-1) yields

$$
\begin{aligned}
y(t)+a \int y(t) d t & =b x(t)+c \int x(t) d t, \quad \text { or } \\
y(t) & =-a \int y(t) d t+b x(t)+c \int x(t) d t
\end{aligned}
$$

Thus, we set up the direct form I in Figure S6.6-1.

Figure S6.6-1
(b) Since we are told that the system is linear and time-invariant, we can interchange boxes A and B, as shown in Figure S6.6-2.

Figure S6.6-2

Combining the two integrators yields the final answer, shown in Figure S6.6-3.

Figure S6.6-3

Solutions to Optional Problems

S6.7
(a) In Figure S6.7 we convert the block diagram from Figure P6.7 to direct form I.

Figure S6.7
$q[n]$ is given by

$$
q[n]=x[n]+x[n-1]
$$

while

$$
y[n]=q[n]-4 y[n-1]
$$

Substituting for $q[n]$ yields

$$
y[n]+4 y[n-1]=x[n]+x[n-1]
$$

(b) The relation between $x[n]$ and $r[n]$ is $r[n]=-4 r[n-1]+x[n]$. For such a simple equation, we solve it recursively when $\delta[n]=x[n]$.

n	$\delta[n]$	$r[n-1]$	$r[n]$
<0	0	0	0
0	1	0	1
1	0	1	-4
2	0	-4	16
3	0	16	-64

We see that $r[n]=(-4)^{n} u[n]$.
(c) $y[n]$ is related to $r[n]$ by

$$
y[n]=r[n]+r[n-1]
$$

Now $y[n]=h[n]$, the impulse response, when $x[n]=\delta[n]$, and

$$
h[n]=(-4)^{n} u[n]+(-4)^{n-1} u[n-1]
$$

This expression for $h[n]$ can be further simplified:

$$
h[n]=(-4)^{n} u[n]+(-4)^{n-1} u[n-1]
$$

or

$$
h[n]= \begin{cases}0, & n<0 \\ 1, & n=0\end{cases}
$$

For $n>0$,

$$
\begin{aligned}
h[n] & =(-4)^{n}+(-4)^{n-1} \\
& =-3(-4)^{n-1}
\end{aligned}
$$

Thus,

$$
h[n]=\delta[n]-3(-4)^{n-1} u[n-1]
$$

Note that the system in Figure P6.8 is not in any standard form. Relating $r(t)$ to $x(t)$ first, we have

$$
\begin{align*}
\int a[x(t)+r(t)] d t & =r(t), \quad \text { or } \tag{S6.8-1}\\
\frac{d r(t)}{d t}-a r(t) & =a x(t)
\end{align*}
$$

represented in the system shown in Figure S6.8.

Figure S6.8
The signal $y(t)$ is related to $r(t)$ as follows:

$$
\begin{align*}
r(t)+b \int r(t) d t & =y(t), \quad \text { or } \tag{S6.8-2}\\
\frac{d r(t)}{d t}+b r(t) & =\frac{d y(t)}{d t}
\end{align*}
$$

Solving for $d r(t) / d t$ in eqs. (S6.8-1) and (S6.8-2) and equating, we obtain

$$
a r(t)+a x(t)=-b r(t)+\frac{d y(t)}{d t}
$$

Therefore,

$$
\begin{equation*}
r(t)=\frac{-a}{a+b} x(t)+\frac{1}{a+b} \frac{d y(t)}{d t} \tag{S6.8-3}
\end{equation*}
$$

We now substitute eq. (S6.8-3) into eq. (S6.8-1) (or eq. S6.8-2), which, after simplification, yields

$$
\frac{d y^{2}(t)}{d t^{2}}-a \frac{d y(t)}{d t}=a \frac{d x(t)}{d t}+a b x(t)
$$

(a) Substituting $y[n]=A z_{0}^{n}$ into the homogeneous LCCDE, we have

$$
A z_{0}^{n}-\frac{1}{2} A z_{0}^{n-1}=0
$$

Dividing by $A z_{0}^{n-1}$ yields

$$
z_{0}-\frac{1}{2}=0, \quad \text { or } \quad z_{0}=\frac{1}{2}
$$

(b) For the moment, assume that the input is $\hat{x}[n]=K e^{j \Omega_{0} n} u[n]$ and the resulting output is $\hat{y}[n]=Y e^{j \Omega_{0 n} u} u[n]$. Thus,

$$
\hat{y}[n]-\frac{1}{2} \hat{y}[n-1]=\hat{x}[n]
$$

Substituting for $\hat{y}[n]$ and $\hat{x}[n]$ yields

$$
Y e^{j \Omega_{0} n}-\frac{1}{2} Y e^{j \Omega_{0}(n-1)}=K e^{j \Omega_{0} n} \quad \text { for } n \geq 1
$$

Dividing by $e^{j \Omega_{0 n}}$, we get

$$
Y-\frac{1}{2} e^{-j \Omega_{0}} \cdot Y=K
$$

Thus

$$
\begin{aligned}
& Y=\frac{K}{1-\frac{1}{2} e^{-j \Omega_{0}}}=\frac{K}{\sqrt{\frac{5}{4}-\cos \Omega_{0}} e^{\left.+j \tan -1\left(\sin \Omega_{0}\right) /\left(2-\cos \Omega_{0}\right)\right]}}, \quad \text { or } \\
& Y=\frac{K}{\sqrt{\frac{5}{4}-\cos \Omega_{0}}} e^{-j \tan ^{-1}\left\{\left(\sin \Omega_{0}\right) /\left(2-\cos \Omega_{0}\right) \mid\right.}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y[n]=\operatorname{Re}\left[Y e^{j \Omega_{0} n} u[n]\right] & =\frac{K}{\sqrt{\frac{5}{4}-\cos \Omega_{0}}} \operatorname{Re}\left[e^{j\left(\Omega_{0} n-\tan -11\left(\sin \Omega_{0}\right) /\left(2-\cos \Omega_{0}\right)\right]} u[n]\right] \\
& =B \cos \left(\Omega_{0} n+\theta\right), \quad \text { where } B=\frac{K}{\sqrt{\frac{5}{4}-\cos \Omega_{0}}} \\
\theta & =-\tan ^{-1}\left(\frac{\sin \Omega_{0}}{2-\cos \Omega_{0}}\right)
\end{aligned}
$$

The important observation to make is that if $\left[d^{i} r(t)\right] / d t^{i}$ is the input to the system H, then $\left[d^{i} s(t)\right] / d t^{i}$ will be the output. Suppose that we construct a signal

$$
q(t)=\sum_{i=1}^{M} a_{i} \frac{d^{i} r(t)}{d t^{i}}
$$

The response of H to the excitation $q(t)$ is

$$
p(t)=\sum_{i=1}^{M} a_{i} \frac{d^{i} s(t)}{d t^{i}}
$$

However, $q(t)=0$ for all t. Therefore, $p(t)=0$ for all t. Thus,

$$
\sum_{i=1}^{M} a_{i} \frac{d^{i} s(t)}{d t^{i}}=0
$$

S6.11
(a) Substituting $y(t)=A e^{s o t}$ into the homogeneous LCCDE, we have

$$
\begin{aligned}
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}} & =\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}}\left(A e^{s_{0} t}\right)=0 \\
& =\left(\sum_{k=0}^{N} a_{k} s_{0}^{k}\right) A e^{s_{0} t}=0
\end{aligned}
$$

Since $A \neq 0$ and $e^{s 0 t} \neq 0$, we get

$$
p\left(s_{0}\right)=\sum_{k=0}^{N} a_{k} s_{0}^{k}=0
$$

(b) Here we need to use a rather subtle trick. Note that

$$
A t e^{s t}=\frac{d}{d s}\left(A e^{s t}\right)
$$

Using this alternative form for Ate ${ }^{s t}$, we obtain

$$
\begin{aligned}
\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}}\left(\frac{d}{d s} A e^{s t}\right) & =\frac{d}{d s}\left[\sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}}\left(A e^{s t}\right)\right] \\
& =\frac{d}{d s}\left[p(s) A e^{s t}\right]=A t p(s)+A \frac{d p(s)}{d s} e^{s t}
\end{aligned}
$$

For $s=s_{0}, p\left(s_{0}\right)=0$. Also, since $p(s)$ is of the form

$$
p(s)=\left(s-s_{0}\right)^{2} q(s)
$$

we have

$$
\left.\frac{d p(s)}{d s}\right|_{s=s_{0}}=0
$$

Therefore, Ate ${ }^{s 0 t}$ satisfies the homogeneous LCCDE.
(c) Substituting $y(t)=e^{s t}$, we get the characteristic equation

$$
s^{2}+2 s+1=0, \quad \text { or } \quad s_{0}=-1
$$

Thus, $y(t)=K_{1} e^{-t}+K_{2} t e^{-t}$. For $y(0)=1$ and $y^{\prime}(0)=1$, we need $K_{1}=1$ and $K_{2}-K_{1}=1$, or $K_{2}=2$. Thus,

$$
y(t)=e^{-t}+2 t e^{-t}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

