7 Continuous-Time Fourier Series

Solutions to

Recommended Problems

S7.
(a) For the LTI system indicated in Figure S7.1, the output $y(t)$ is expressed as

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
$$

where $h(t)$ is the impulse response and $x(t)$ is the input.

Figure $\mathbf{S 7} .1$
For $x(t)=e^{j \omega t}$,

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\tau) e^{j \omega(t-\tau)} d \tau \\
& =e^{j \omega t} \int_{-\infty}^{\infty} h(\tau) e^{-j \omega \tau} d \tau \\
& =e^{+j \omega t} H(\omega)
\end{aligned}
$$

(b) We are given that the first-order differential equation is of the form

$$
\frac{d y(t)}{d t}+a y(t)=x(t)
$$

From part (a), when $x(t)=e^{j \omega t}$, then $y(t)=e^{j \omega t} H(\omega)$. Also, by differentiating $y(t)$, we have

$$
\frac{d y(t)}{d t}=j \omega e^{j \omega t} H(\omega)
$$

Substituting, we get

$$
j \omega e^{j \omega t} H(\omega)+a e^{j \omega t} H(\omega)=e^{j \omega t}
$$

Hence,

$$
\begin{aligned}
j \omega H(\omega)+a H(\omega) & =1, \quad \text { or } \\
H(\omega) & =\frac{1}{a+j \omega}
\end{aligned}
$$

(a) The output of a discrete-time LTI system is given by the discrete-time convolution sum

$$
y[n]=\sum_{k} h[k] x[n-k]
$$

If $x[n]=z^{n}$, then

$$
\begin{aligned}
y[n] & =\sum_{k} h[k] z^{n-k} \\
& =z^{n} \sum_{k} h[k] z^{-k} \\
& =z^{n} H(z)
\end{aligned}
$$

(b) We are given that the first-order difference equation is of the form

$$
y[n]+a y[n-1]=x[n]
$$

From part (a), if $x[n]=z^{n}$, then $y[n]=z^{n} H(z)$. Hence,

$$
y[n-1]=z^{n-1} H(z)
$$

By substitution,

$$
z^{n} H(z)+a z^{n-1} H(z)=z^{n}
$$

which implies

$$
\begin{aligned}
\left(1+a z^{-1}\right) H(z) & =1 \\
H(z) & =\frac{1}{1+a z^{-1}}
\end{aligned}
$$

(a) $x(t)=\sin \left(10 \pi t+\frac{\pi}{6}\right)$

$$
=\frac{e^{j \pi / 6}}{2 j} e^{j 2 \pi t 5}-\frac{e^{-j \pi / 6}}{2 j} e^{-j 2 \pi t 5}
$$

We choose ω_{0}, the fundamental frequency, to be 2π.

$$
x(t)=\sum_{k} a_{k} e^{j k \omega_{0} t}
$$

where

$$
a_{5}=\frac{e^{j \pi / 6}}{2 j}, \quad a_{-5}=\frac{-e^{-j \pi / 6}}{2 j}
$$

Otherwise $a_{k}=0$.
(b) $x(t)=1+\cos (2 \pi t)$

$$
=1+\frac{e^{j 2 \pi t}}{2}+\frac{e^{-j 2 \pi t}}{2}
$$

For $\omega_{0}=2 \pi, a_{-1}=a_{1}=\frac{1}{2}$, and $a_{0}=1$. All other $a_{k}{ }^{\prime} \mathrm{s}=0$.
(c) $x(t)=[1+\cos (2 \pi t)]\left[\sin \left(10 \pi t+\frac{\pi}{6}\right)\right]$

$$
=\sin \left(10 \pi t+\frac{\pi}{6}\right)+\cos (2 \pi t) \sin \left(10 \pi t+\frac{\pi}{6}\right)
$$

$$
=\left(\frac{e^{j \pi / 6}}{2 j} e^{j 2 \pi t 5}-\frac{e^{-j \pi / 6}}{2 j} e^{-j 2 \pi t 5}\right)+\left(\frac{1}{2} e^{j 2 \pi t}+\frac{1}{2} e^{-j 2 \pi t}\right)\left(\frac{e^{j \pi / 6}}{2 j} e^{j 2 \pi t 5}-\frac{e^{-j \pi / 6}}{2 j} e^{-j 2 \pi t 5}\right)
$$

$$
=\frac{e^{j \pi / 6}}{2 j} e^{j 2 \pi t 5}-\frac{e^{-j \pi / 6}}{2 j} e^{-j 2 \pi t 5}+\frac{e^{j \pi / 6}}{4 j} e^{j 2 \pi t 6}-\frac{e^{-j \pi / 6}}{4 j} e^{-j 2 \pi t 4}
$$

$$
+\frac{e^{j \pi / 6}}{4 j} e^{j 2 \pi t 4}-\frac{e^{-j \pi / 6}}{4 j} e^{-j 2 \pi t 6}
$$

Therefore,

$$
x(t)=\sum_{k} a_{k} e^{j k \omega_{0} t}
$$

where $\omega_{0}=2 \pi$.

$$
\begin{array}{ll}
a_{4}=\frac{e^{j \pi / 6}}{4 j}, & a_{-4}=\frac{-e^{-j \pi / 6}}{4 j} \\
a_{5}=\frac{e^{j \pi / 6}}{2 j}, & a_{-5}=\frac{-e^{-j \pi / 6}}{2 j}, \\
a_{6}=\frac{e^{j \pi / 6}}{4 j}, & a_{-6}=\frac{-e^{-j \pi / 6}}{4 j}
\end{array}
$$

All other a_{k} 's $=0$.

S7. 4
(a)

Figure S7.4-1
Note that the period is $T_{0}=6$. Fourier coefficients are given by

$$
a_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t
$$

We take $\omega_{0}=2 \pi / T_{0}=\pi / 3$. Choosing the period of integration as -3 to 3 , we have

$$
\begin{aligned}
a_{k} & =\frac{1}{6} \int_{-2}^{-1} e^{-j k(\pi / 3) t} d t-\frac{1}{6} \int_{1}^{2} e^{-j k(\pi / 3) t} d t \\
& =\left.\frac{1}{6} \frac{1}{-j k(\pi / 3)} e^{-j k(\pi / 3) t}\right|_{-2} ^{-1}-\left.\frac{1}{6} \frac{1}{-j k(\pi / 3)} e^{-j k(\pi / 3) t}\right|_{1} ^{2} \\
& =\frac{1}{-j 2 \pi k}\left[e^{+j(\pi / 3) k}-e^{+j(2 \pi / 3) k}-e^{-j(2 \pi / 3) k}+e^{-j(\pi / 3) k}\right] \\
& =\frac{\cos (2 \pi / 3) k}{j \pi k}-\frac{\cos (\pi / 3) k}{j \pi k}
\end{aligned}
$$

Therefore,

$$
x(t)=\sum_{k} a_{k} e^{j k \omega_{0} t}, \quad \omega_{0}=\frac{\pi}{3}
$$

and

$$
a_{k}=\frac{\cos (2 \pi / 3) k-\cos (\pi / 3) k}{j \pi k}
$$

Note that $a_{0}=0$, as can be determined either by applying L'Hôpital's rule or by noting that

$$
a_{0}=\left(1 / T_{0}\right) \int_{T_{0}} x(t) d t .
$$

(b)

Figure S7.4-2
The period is $T_{0}=2$, with $\omega_{0}=2 \pi / 2=\pi$. The Fourier coefficients are

$$
a_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t
$$

Choosing the period of integration as $-\frac{1}{2}$ to $\frac{3}{2}$, we have

$$
\begin{aligned}
a_{k} & =\frac{1}{2} \int_{-1 / 2}^{3 / 2} x(t) e^{-j k \omega_{0} t} d t \\
& =\frac{1}{2} \int_{-1 / 2}^{3 / 2}[\delta(t)-2 \delta(t-1)] e^{-j k \omega_{0} t} d t \\
& =\frac{1}{2}-e^{-j k \omega_{0}}=\frac{1}{2}-\left(e^{-j \pi}\right)^{k}
\end{aligned}
$$

Therefore,

$$
a_{0}=-\frac{1}{2}, \quad a_{k}=\frac{1}{2}-(-1)^{k}
$$

It is instructive to plot a_{k}, which we have done in Figure S7.4-3.

Figure S7.4-3
(a) (i) and (ii)

From Problem 4.12 of the text (page 260), we have

$$
x\left(t-\frac{T}{2}\right)=-x(t)
$$

which means odd harmonics. Since $x(t)$ is real and even, the waveform has real coefficients.
(b) (i) and (iii)

$$
-x(t)=x\left(t-\frac{T}{2}\right)
$$

which means odd harmonics. Since $x(t)$ is real and odd, the waveform has imaginary coefficients.
(c) (i)

$$
-x(t)=x\left(t-\frac{T}{2}\right)
$$

which means odd harmonics. Also, $x(t)$ is neither even nor odd.

Solutions to

Optional Problems

S7.6
$x(t)$ is specified in the interval $0<t<T / 4$, as shown in Figure S7.6-1.

Figure S7.6-1
(a) Since $x(t)$ is even, we can extend Figure S7.6-1 as indicated in Figure S7.6-2.

Figure S7.6-2

Since $x(t)$ has only odd harmonics, it must have the property that $x(t-T / 2)$ $=-x(t)$, as shown in Figure 57.6-3.

Figure S7.6-3

So we have $x(t)$ as in Figure $\mathrm{S} 7.6-4$.

(b) In the interval from $t=0$ to $t=T / 4, x(t)$ is given as in Figure S7.6-5.

Figure S7.6-5

Since $x(t)$ is odd, for $-T / 4<t<T / 4$ it must be as indicated in Figure S7.6-6.

Figure S7.6-6
Since $x(t)$ has odd harmonics, $x[t-(T / 2)]=-x(t)$. Consequently $x(t)$ is as shown in Figure S7.6-7.

Figure S7.6-7

S7.7
$a_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j \kappa_{0} t} d t$
(a) $\hat{\alpha}_{k}=\frac{1}{T_{0}} \int_{T_{0}} x\left(t-t_{0}\right) e^{-j k \omega_{0} t} d t$

Substituting $\tau=t-t_{0}$, we obtain

$$
\begin{aligned}
\hat{a}_{k} & =\frac{1}{T_{0}} \int_{T_{0}} x(\tau) e^{j k \omega_{0} \tau} d \tau \cdot e^{-j k \omega_{0} t_{0}} \\
& =a_{k} e^{-j k_{0} t_{0}}
\end{aligned}
$$

(b) $\hat{a}_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(-t) e^{-j k \omega_{0} t} d t$

Substituting $\tau=-t$, we have

$$
\hat{a}_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(\tau) e^{j k_{0} \tau} d \tau=a_{-k}
$$

(c) $\hat{\alpha}_{k}=\frac{1}{T_{0}} \int_{T_{0}} x^{*}(t) e^{-j k \omega_{0} t} d t$
$\hat{a}_{k}^{*}=\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{j k \omega_{0} t} d t=a_{-k}$,
$\hat{a}_{k}=a_{-k}^{*}$
(d) $\hat{a}_{k}=\frac{\alpha}{T_{0}} \int_{r_{0} / \alpha} x(\alpha t) e^{-j k\left(2 \pi \alpha / T_{0}\right) t} d t$

Let $\tau=\alpha t$. Then

$$
\hat{a}_{k}=\frac{1}{T_{0}} \int_{T_{0}} x(\tau) e^{-j k\left(2 \pi / T_{0}\right) \tau} d \tau=a_{k}
$$

Therefore,

$$
\hat{T}_{0}=\frac{T_{0}}{\alpha}
$$

(a) Since $\phi_{k}(t)$ are eigenfunctions and the system is linear, the output is

$$
y(t)=\sum_{k=-\infty}^{\infty} \lambda_{k} c_{k} \phi_{k}(t)
$$

(b) $y(t)=t^{2} \frac{d^{2} x(t)}{d t^{2}}+t \frac{d x(t)}{d t}$,

$$
\phi_{k}(t)=t^{k}
$$

$$
\frac{d \phi_{k}(t)}{d t}=k t^{k-1}
$$

$$
\frac{d^{2} \phi_{k}(t)}{d t^{2}}=k(k-1) t^{k-2}
$$

So if $\phi_{k}(t)=x(t)$, then

$$
\begin{aligned}
y(t) & =t^{2} k(k-1) t^{k-2}+t k t^{k-1} \\
& =k(k-1) t^{k}+k t^{k} \\
& =k^{2} t^{k}=k^{2} \phi_{k}(t)
\end{aligned}
$$

The eigenfunction $\phi_{k}(t)$ has eigenvalue $\lambda_{k}=k^{2}$.

S7.9
(a) $\tilde{y}(t)=\tilde{x}_{1}(t) \circledast \tilde{x}_{2}(t)$

$$
=\int_{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau
$$

The Fourier coefficients for $\tilde{y}(t)$ are given by

$$
\begin{aligned}
c_{k} & =\frac{1}{T_{0}} \int_{T_{0}} \int_{T_{0}} \tilde{x}_{1}(\tau) \tilde{x}_{2}(t-\tau) d \tau e^{-j k\left(2 \pi / T_{0}\right) t} d t \\
& =\frac{1}{T_{0}} \int_{T_{0}} \tilde{x}_{1}(\tau) e^{-j k\left(2 \pi / T_{0}\right) \tau} d \tau \int_{T_{0}} \tilde{x}_{2}(t-\tau) e^{-j k\left(2 \pi / T_{0}\right)(t-\tau)} d t \\
& =T_{0} a_{k} b_{k}
\end{aligned}
$$

(b) Since $\boldsymbol{z}(t) * \boldsymbol{z}(t)=x(t)$, as shown in Figure S7.9-1, then $\boldsymbol{z}(t)$ is shown in Figure S7.9-2.

Figure S7.9-2
In Figure $57.9-2, T_{0}=5$. Hence,

$$
\tilde{x}(t) \longleftrightarrow T_{0} z_{k}^{2}=\frac{4}{5}\left[\operatorname{sinc}\left(\frac{2 \pi k}{5}\right)\right]^{2}
$$

(c) Without explicitly carrying out the convolutions, we can argue that the aperiodic convolution of $x_{1}(t)$ and $x_{2}(t)$ will be symmetric about the origin and is nonzero from $t=-2 T$ to $t=2 T$. Now, if $\tilde{x}_{1}(t)$ and $\tilde{x}_{2}(t)$ are periodic with period T_{0}, then the periodic convolution, $\tilde{y}(t)$, will be periodic with period T_{0}. If T_{0} is large enough, then $\tilde{y}(t)$ is the periodic version of $y(t)$ with period T_{0}. Hence, to recover $y(t)$ from $\tilde{y}(t)$ we should extract only one period of $\tilde{y}(t)$ from $t=$ $-T_{0} / 2$ to $t=T_{0} / 2$ and set $y(t)=0$ for $|t|>T_{0} / 2$, where $T_{0} / 2 \geq 2 T$, or $T_{0} \geq$ $4 T$.
(a) The approximation is

$$
\hat{x}_{N}(t)=\sum_{k=-N}^{N} a_{k} \phi_{k}(t)
$$

with the corresponding error signal

$$
\begin{aligned}
e_{N}(t) & =x(t)-\hat{x}_{N}(t) \\
& =x(t)-\sum_{k=-N}^{N} a_{k} \phi_{k}(t)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|e_{N}(t)\right|^{2} & =\left[x(t)-\sum_{k} a_{k} \phi_{k}(t)\right]\left[x^{*}(t)-\sum_{k} a_{k}^{*} \phi_{k}^{*}(t)\right] \\
& =|x(t)|^{2}-\sum_{k} a_{k}^{*} x(t) \phi_{k}^{*}(t)-\sum_{k} a_{k} x^{*}(t) \phi_{k}(t)+\sum_{k} \sum_{l} a_{k} a_{l}^{*} \phi_{k}(t) \phi_{l}^{*}(t)
\end{aligned}
$$

If we integrate, $\int_{a}^{b}\left|e_{N}(t)\right|^{2} d t$, and use the property that

$$
\int_{a}^{b} \phi_{k}(t) \phi_{l}^{*}(t) d t= \begin{cases}1, & k=l \\ 0, & \text { otherwise }\end{cases}
$$

we get

$$
\begin{aligned}
E= & \int_{a}^{b}|x(t)|^{2} d t-\sum_{k} a_{k}^{*} \int_{a}^{b} x(t) \phi_{k}^{*}(t) d t \\
& -\sum_{k} a_{k} \int_{a}^{b} x^{*}(t) \phi_{k}(t) d t+\sum_{k}\left|a_{k}\right|^{2}
\end{aligned}
$$

Since $a_{i}=b_{i}+j c_{i}$,

$$
\frac{\partial E}{\partial b_{i}}=-\int_{a}^{b} x(t) \phi_{i}^{*}(t) d t-\int_{a}^{b} x^{*}(t) \phi_{i}(t) d t+2 b_{i}
$$

and

$$
\frac{\partial E}{\partial c_{i}}=j \int_{a}^{b} x(t) \phi_{i}^{*}(t) d t-j \int_{a}^{b} x^{*}(t) \phi_{i}(t) d t+2 c_{i}
$$

Setting

$$
\frac{\partial E}{\partial b_{i}}=0 \quad \text { and } \quad \frac{\partial E}{\partial c_{i}}=0
$$

we can multiply the second equation by j and add the two equations to get

$$
\frac{\partial E}{\partial b_{i}}+j \frac{\partial E}{\partial c_{i}}=0
$$

By substitution, we get

$$
\begin{aligned}
b_{i}+j c_{i} & =\int_{a}^{b} x(t) \phi_{i}^{*}(t) d t \\
& =a_{i}
\end{aligned}
$$

(b) If $\left\{\phi_{i}(t)\right\}$ are orthogonal but not orthonormal, then the only thing that changes from the result of part (a) is

$$
\int_{a}^{b} \sum_{k} \sum_{l} a_{k} a_{l}^{*} \phi_{k}(t) \phi_{l}^{*}(t) d t=\sum_{k}\left|a_{k}\right|^{2} A_{k}
$$

It is easy to see that we will now get

$$
a_{i}=\frac{1}{A_{i}} \int_{a}^{b} x(t) \phi_{i}^{*}(t) d t
$$

(c) Since

$$
\int_{a}^{T_{0}+a} e^{j n \omega_{0} t} e^{-j n \omega_{0} t} d t=T_{0}
$$

for all values of a, using parts (a) and (b) we can write

$$
\begin{aligned}
a_{i} & =\frac{1}{T_{0}} \int_{a}^{T_{0}+a} x(t) e^{-j n \omega_{0} t} d t \\
& =\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j n \omega_{0} t} d t
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

