9 Fourier Transform Properties

Solutions to
 Recommended Problems

S9. 1
The Fourier transform of $x(t)$ is

$$
\begin{equation*}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{-t / 2} u(t) e^{-j \omega t} d t \tag{S9.1-1}
\end{equation*}
$$

Since $u(t)=0$ for $t<0$, eq. (S9.1-1) can be rewritten as

$$
\begin{aligned}
X(\omega) & =\int_{0}^{\infty} e^{-(1 / 2+j \omega) t} d t \\
& =\frac{+2}{1+j 2 \omega}
\end{aligned}
$$

It is convenient to write $X(\omega)$ in terms of its real and imaginary parts:

$$
\begin{aligned}
X(\omega) & =\frac{2}{1+j 2 \omega}\left(\frac{1-j 2 \omega}{1-j 2 \omega}\right)=\frac{2-j 4 \omega}{1+4 \omega^{2}} \\
& =\frac{2}{1+4 \omega^{2}}-j \frac{4 \omega}{1+4 \omega^{2}}
\end{aligned}
$$

Magnitude of $X(\omega)=\frac{2}{\sqrt{1+4 \omega^{2}}}$

$$
X(\omega)=\tan ^{-1}(-2 \omega)=-\tan ^{-1}(2 \omega)
$$

$$
\operatorname{Re}\{X(\omega)\}=\frac{+2}{1+4 \omega^{2}}, \quad \operatorname{Im}\{X(\omega)\}=\frac{-4 \omega}{1+4 \omega^{2}}
$$

(a)

(b)

Figure S9.1-2
(c)

Figure S9.1-3
(d)

Figure S9.1-4
$\mathbf{S 9 . 2}$
(a) The magnitude of $X(\omega)$ is given by

$$
|X(\omega)|=\sqrt{X_{R}^{2}(\omega)+X_{I}^{2}(\omega)}
$$

where $X_{R}(\omega)$ is the real part of $X(\omega)$ and $X_{R}(\omega)$ is the imaginary part of $X(\omega)$. It follows that

$$
|X(\omega)|=\left\{\begin{array}{cl}
\sqrt{2,} & |\omega|<W \\
0, & |\omega|>W
\end{array}\right.
$$

Figure S9.2-1
The phase of $X(\omega)$ is given by

$$
\Varangle X(\omega)=\tan ^{-1}\left(\frac{X_{I}(\omega)}{X_{R}(\omega)}\right)=\tan ^{-1}(1), \quad|\omega|<W
$$

(b) $\quad X(\omega)= \begin{cases}1+j, & |\omega|<W \\ 0, & \text { otherwise }\end{cases}$
$X(-\omega)= \begin{cases}1+j, & |\omega|<W \\ 0, & \text { otherwise }\end{cases}$
$X^{*}(\omega)= \begin{cases}1-j, & |\omega|<W \\ 0, & \text { otherwise }\end{cases}$
Hence, the signal is not real.

For $x(t)$ to be real-valued, $X(\omega)$ is conjugate symmetric:

$$
X(-\omega)=X^{*}(\omega)
$$

(a) $X(\omega)=|X(\omega)| e^{j \Varangle X(\omega)}$

$$
=|X(\omega)| \cos (\Varangle X(\omega))+j|X(\omega)| \sin (\Varangle X(\omega))
$$

Therefore,

$$
\begin{aligned}
X(-\omega) & =|X(-\omega)| \cos (\Varangle X(-\omega))+j|X(-\omega)| \sin (\Varangle X(-\omega)) \\
& =|X(\omega)| \cos (\Varangle X(\omega))-j|X(\omega)| \sin (\Varangle X(\omega)) \\
& =X^{*}(\omega)
\end{aligned}
$$

Hence, $x(t)$ is real-valued.
(b) $\quad X(\omega)=X_{R}(\omega)+j X_{r}(\omega)$
$X(-\omega)=X_{R}(-\omega)+j X_{R}(-\omega)$

$$
=X_{R}(\omega)+j\left[-X_{r}(\omega)+2 \pi\right] \quad \text { for } \omega>0
$$

$$
X^{*}(\omega)=X_{R}(\omega)-j X_{I}(\omega)
$$

Therefore,

$$
X^{*}(\omega) \neq X(-\omega)
$$

Hence, $x(t)$ is not real-valued.

S9.4
(a) (i) $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

We take the complex conjugate of both sides to get

$$
X^{*}(\omega)=\int_{-\infty}^{\infty} x^{*}(t) e^{j \omega t} d t
$$

Since $x(t)$ is real-valued,

$$
X^{*}(\omega)=\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t
$$

Therefore,

$$
\begin{aligned}
X^{*}(-\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& =X(\omega)
\end{aligned}
$$

(ii) $\quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$

Taking the complex conjugate of both sides, we have

$$
x^{*}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(\omega) e^{-j \omega t} d \omega
$$

Therefore,

$$
x^{*}(-t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(\omega) e^{j \omega t} d \omega
$$

Since $x(t)=x^{*}(-t)$, we have

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(\omega) e^{j \omega t} d \omega
$$

This shows that $X(\omega)$ must be real-valued.
(b) (i) Since $x(t)$ is real, $X(\omega)=X^{*}(-\omega)$. Since $x(t)$ is real and even, it satisfies $x(t)=x^{*}(-t)$ and, therefore, $X(\omega)$ is real. Hence, $X(\omega)=X^{*}(-\omega)=$ $X(-\omega)$. It follows that $X(\omega)$ is real and even.
(ii) If $x(t)$ is real, $X(\omega)=X^{*}(-\omega)$. Since $x(t)$ is real and odd, $x(t)=$ $-x^{*}(-t)$; an analysis similar to part (a)(ii) proves that $X(\omega)$ must be imaginary. Hence, $X(\omega)=X^{*}(-\omega)=-X(-\omega)$. It follows that $X(\omega)$ is also odd.
(a) $\mathcal{F}\left\{e^{-\alpha|t|}\right\}=\mathcal{F}\left\{e^{-\alpha t} u(t)+e^{\alpha t} u(-t)\right\}$

$$
=\frac{1}{\alpha+j \omega}+\frac{1}{\alpha-j \omega}
$$

$$
=\frac{2 \alpha}{\alpha^{2}+\omega^{2}}
$$

(b) Duality states that

$$
\begin{aligned}
& g(t) \stackrel{\mathcal{F}}{\not} G(\omega) \\
& G(t) \stackrel{\mathfrak{7}}{\longleftrightarrow} 2 \pi g(-\omega)
\end{aligned}
$$

Since

$$
e^{-\alpha|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{2 \alpha}{\alpha^{2}+\omega^{2}}
$$

we have

$$
\frac{1}{1+t^{2}} \stackrel{7}{\longleftrightarrow} \pi e^{-|\omega|}
$$

(c) $\frac{1}{1+(3 t)^{2}} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{3} \pi e^{-|\omega / 3|}$ since $x(a t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$
(d) We are given Figure S9.5-1.

Figure S9.5-1

$$
\begin{aligned}
X(\omega)=A \int_{-T}^{T} e^{-j \omega t} d t & =\frac{A}{-j \omega}\left(e^{-j \omega T}-e^{j \omega T}\right) \\
& =A \frac{-2 j \sin \omega T}{-j \omega} \\
& =2 T A \frac{\sin (\omega T)}{\omega T}
\end{aligned}
$$

Sketches of $y(t), Y(\omega)$, and $X(\omega)$ are given in Figure S9.5-2.

Figure S9.5-2

Substituting $2 T$ for T in $X(\omega)$, we have

$$
Y(\omega)=2(2 T) \frac{\sin (\omega 2 T)}{\omega 2 T}
$$

The zero crossings are at

$$
\omega_{z} 2 T=n \pi, \quad \text { or } \quad \omega_{z}=n \frac{\pi}{2 T}
$$

$\mathbf{S 9 . 6}$
(a) $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$

Substituting $t=0$ in the preceding equation, we get

$$
x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) d \omega
$$

(b) $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$

Substituting $\omega=0$ in the preceding equation, we get

$$
X(0)=\int_{-\infty}^{\infty} x(t) d t
$$

$\mathbf{S 9 . 7}$
(a) We are given the differential equation

$$
\begin{equation*}
\frac{d y(t)}{d t}+2 y(t)=x(t) \tag{S9.7-1}
\end{equation*}
$$

Taking the Fourier transform of eq. (S9.7-1), we have

$$
j \omega Y(\omega)+2 Y(\omega)=X(\omega)
$$

Hence,

$$
Y(\omega)[2+j \omega]=X(\omega)
$$

and

$$
\begin{aligned}
H(\omega) & =\frac{Y(\omega)}{X(\omega)}=\frac{1}{2+j \omega}, \\
H(\omega) & =\frac{1}{2+j \omega}=\frac{1}{2+j \omega}\left(\frac{2-j \omega}{2-j \omega}\right)=\frac{2-j \omega}{4+\omega^{2}} \\
& =\frac{2}{4+\omega^{2}}-j \frac{\omega}{4+\omega^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& |H(\omega)|^{2}=\frac{4}{\left(4+\omega^{2}\right)^{2}}+\frac{\omega^{2}}{\left(4+\omega^{2}\right)^{2}}=\frac{4+\omega^{2}}{\left(4+\omega^{2}\right)^{2}}, \\
& |H(\omega)|=\frac{1}{\sqrt{4+\omega^{2}}}
\end{aligned}
$$

Figure S9.7
(b) We are given $x(t)=e^{-t} u(t)$. Taking the Fourier transform, we obtain

$$
X(\omega)=\frac{1}{1+j \omega}, \quad H(\omega)=\frac{1}{2+j \omega}
$$

Hence,

$$
Y(\omega)=\frac{1}{(1+j \omega)(2+j \omega)}=\frac{1}{1+j \omega}-\frac{1}{2+j \omega}
$$

(c) Taking the inverse transform of $Y(\omega)$, we get

$$
y(t)=e^{-t} u(t)-e^{-2 t} u(t)
$$

A triangular signal can be represented as the convolution of two rectangular pulses, as indicated in Figure S9.8.

Since each of the rectangular pulses on the right has a Fourier transform given by $(2 \sin \omega) / \omega$, the convolution property tells us that the triangular function will have a Fourier transform given by the square of $(2 \sin \omega) / \omega$:

$$
X(\omega)=\frac{4 \sin ^{2} \omega}{\omega^{2}}
$$

Solutions to

Optional Problems

$\mathbf{S 9 . 9}$

We can compute the function $x(t)$ by taking the inverse Fourier transform of $X(\omega)$

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \pi e^{j \omega t} d \omega \\
& =\frac{1}{2}\left(\frac{1}{j t}\right)\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right) \\
& =\frac{\sin \omega_{0} t}{t}
\end{aligned}
$$

Therefore,

$$
y(t)=\cos \left(\omega_{c} t\right)\left[\frac{\sin \left(\omega_{0} t\right)}{t}\right]
$$

From the multiplicative property, we have

$$
Y(\omega)=X(\omega) *\left[\pi \delta\left(\omega-\omega_{c}\right)-\pi \delta\left(\omega+\omega_{c}\right)\right]
$$

$Y(\omega)$ is sketched in Figure S9.9.

Figure $\mathbf{S 9 . 9}$
(a) $x(t)=e^{-\alpha t} \cos \omega_{0} t u(t), \quad \alpha>0$

$$
=e^{-\alpha t} u(t) \cos \left(\omega_{0} t\right)
$$

Therefore,

$$
\begin{aligned}
X(\omega) & =\frac{1}{2 \pi} \frac{1}{\alpha+j \omega} *\left[\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)\right] \\
& =\frac{1 / 2}{\alpha+j\left(\omega-\omega_{0}\right)}+\frac{1 / 2}{\alpha+j\left(\omega+\omega_{0}\right)}
\end{aligned}
$$

(b) $\quad x(t)=e^{-3|t|} \sin 2 t$
$e^{-3|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{6}{9+\omega^{2}}$
$\sin 2 t \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right], \quad \omega_{0}=2$
Therefore,

$$
\begin{aligned}
X(\omega) & =\frac{1}{2 \pi}\left(\frac{6}{9+\omega^{2}}\right) *\left\{\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]\right\} \\
& =\frac{j 3}{9+(\omega+2)^{2}}-\frac{j 3}{9+(\omega-2)^{2}}
\end{aligned}
$$

(c) $x(t)=\frac{\sin \pi t}{\pi t}\left(\frac{\sin 2 \pi t}{\pi t}\right)$, $X(\omega)=\frac{1}{2 \pi} X_{1}(\omega) * X_{2}(\omega)$,
where

$$
\begin{aligned}
& X_{1}(\omega)= \begin{cases}1, & |\omega|<\pi \\
0, & \text { otherwise }\end{cases} \\
& X_{2}(\omega)= \begin{cases}1, & |\omega|<2 \pi \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Hence, $X(\omega)$ is given by the convolution shown in Figure S9.10.

S9.11
We are given the LCCDE

$$
\frac{d y(t)}{d t}+2 y(t)=A \cos \omega_{0} t
$$

We can view the LCCDE as

$$
\frac{d y(t)}{d t}+2 y(t)=x(t)
$$

the transfer function of which is given by

$$
H(\omega)=\frac{1}{2+j \omega} \quad \text { and } \quad x(t)=A \cos \omega_{0} t
$$

We have already seen that for LTI systems,

$$
\begin{aligned}
y(t) & =\left|H\left(\omega_{0}\right)\right| A \cos \left(\omega_{0} t+\phi\right), \quad \text { where } \phi=\Varangle H\left(\omega_{0}\right) \\
& =\frac{1}{\sqrt{4+\omega_{0}^{2}}} A \cos \left(\omega_{0} t+\phi\right)
\end{aligned}
$$

For the maximum value of $y(t)$ to be $A / 3$, we require

$$
\frac{1}{4+\omega_{0}^{2}}=\frac{1}{9}
$$

Therefore, $\omega_{0}= \pm \sqrt{5}$.
$\mathbf{S 9 . 1 2}$
(a) $\mathcal{F}\left\{\frac{d^{2} y(t)}{d t^{2}}+\frac{2 d y(t)}{d t}+3 y(t)\right\}=-\omega^{2} Y(\omega)+2 j \omega Y(\omega)+3 Y(\omega)$
$=\left(-\omega^{2}+j 2 \omega+3\right) Y(\omega)$, $A(\omega)=-\omega^{2}+j 2 \omega+3$
(b) $\mathcal{F}\left\{\frac{4 d x(t)}{d t}-x(t)\right\}=4 j \omega X(\omega)-X(\omega)$
$=(j 4 \omega-1) X(\omega)$,
$B(\omega)=j 4 \omega-1$, $A(\omega) Y(\omega)=B(\omega) X(\omega)$,
$Y(\omega)=\frac{B(\omega)}{A(\omega)} X(\omega)$
$=H(\omega) X(\omega)$
Therefore,

$$
\begin{aligned}
H(\omega) & =\frac{B(\omega)}{A(\omega)}=\frac{-1+j 4 \omega}{-\omega^{2}+3+j 2 \omega} \\
& =\frac{1-j 4 \omega}{\omega^{2}-3-j 2 \omega}
\end{aligned}
$$

$\mathbf{S 9 . 1 3}$

Figure S9.13-1

Figure S9.13-2

Figure S9.13-3

Figure S9.13-4
Therefore, $y(t)=\pi \frac{\sin \left(\omega_{0} t\right)}{t}$.

S9.14
(a) Energy $=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega$

Figure S9.14-1

$$
\begin{aligned}
\text { Area } & =(4)(2)+(2)(1)(1) \\
& =10 \\
\text { Energy } & =\frac{5}{\pi}
\end{aligned}
$$

(b)

Figure S9.14-2

$$
x(t)=\frac{\sin t}{\pi t}+\frac{\sin 2 t}{\pi t}
$$

Given that

$$
y_{1}(t)=\left.2 \pi X(-\omega)\right|_{\omega=t}
$$

we have

$$
y_{1}(t)=2 \pi \int_{u=-\infty}^{\infty} x(u) e^{j t u} d u
$$

Similarly, let $y_{2}(t)$ be the output due to passing $x(t)$ through F twice.

$$
\begin{aligned}
y_{2}(t) & =2 \pi \int_{v=-\infty}^{\infty} 2 \pi \int_{u=-\infty}^{\infty} x(u) e^{j v u} d u e^{j t v} d v \\
& =(2 \pi)^{2} \int_{u=-\infty}^{\infty} x(u) \int_{v=-\infty}^{\infty} e^{j(t+u) v} d v d u \\
& =(2 \pi)^{2} \int_{u=-\infty}^{\infty} x(u)(2 \pi) \delta(t+u) d u \\
& =(2 \pi)^{3} x(-t)
\end{aligned}
$$

Finally, let $y_{3}(t)$ be the output due to passing $x(t)$ through F three times.

$$
\begin{aligned}
y_{3}(t)=w(t) & =2 \pi \int_{u=-\infty}^{\infty}(2 \pi)^{3} x(-u) e^{j t u} d u \\
& =(2 \pi)^{4} \int_{-\infty}^{\infty} e^{-j t u} x(u) d u \\
& =(2 \pi)^{4} X(t)
\end{aligned}
$$

We are given

$$
x(t)=\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t), \quad a>0
$$

Let $n=1$:

$$
\begin{aligned}
x(t) & =e^{-a t} u(t), \quad a>0 \\
X(\omega) & =\frac{1}{a+j \omega}
\end{aligned}
$$

Let $n=2$:

$$
\begin{aligned}
x(t) & =t e^{-a t} u(t) \\
X(\omega) & =j \frac{d}{d \omega}\left(\frac{1}{a+j \omega}\right) \quad \text { since } \quad t x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{d}{d \omega} X(\omega) \\
& =\frac{1}{(a+j \omega)^{2}}
\end{aligned}
$$

Assume it is true for n :

$$
\begin{aligned}
& x(t)=\frac{t^{n-1}}{(n-1)!} e^{-a t} u(t) \\
& X(\omega)=\frac{1}{(a+j \omega)^{n}}
\end{aligned}
$$

We consider the case for $n+1$:

$$
\begin{aligned}
x(t) & =\frac{t^{n}}{n!} e^{-a t} u(t) \\
X(\omega) & =\frac{j}{n} \frac{d}{d \omega}\left[\frac{1}{(a+j \omega)^{n}}\right] \\
& =\frac{j}{n} \frac{d}{d \omega}\left[(a+j \omega)^{-n}\right] \\
& =\frac{j}{n}(-n)(a+j \omega)^{-n-1} j \\
& =\frac{1}{(a+j \omega)^{n+1}}
\end{aligned}
$$

Therefore, it is true for all n.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

