14 Demonstration of Amplitude Modulation

Recommended

Problems

P14.1

Consider the AM modulation system in Figure P14.1-1.

K / A is called the modulation index, where K is the maximum amplitude of $x(t)$. Parts (a)-(c) contain plots of $y(t)$ versus t for several different modulation indices, with $x(t)=B \cos \omega_{0} t$. Find the modulation index for each signal.
(a)

(b)

(c)

Figure P14.1-4

P14.2
(a) Consider the signal $x(t)$ in Figure P14.2-1.

Figure P14.2-1
Draw $y(t)$ for each of the following systems.
(i)

Figure P14.2-2
(ii)

Figure P14.2-3
(iii)

Figure P14.2-4
(b) Suppose that $x(t)$ has the Fourier transform shown in Figure P14.2-5. Find $Y(\omega)$ for each case in part (a).

Figure P14.2-5

P14.3
For each of the time waveforms (a)-(j) (Figures P14.3-1 to P14.3-10), match its possible spectrum (i)-(x) (Figures P14.3-11 to P14.3-20).
(a)

Figure P14.3-1
(b)

Figure P14.3-2
(c)

Figure P14.3-3
(d)

Figure P14.3-4
(e)

Figure P14.3-5
(f)

Figure P14.3-6

Figure P14.3-7
(h)

Figure P14.3-8

Figure P14.3-9
(j)

Figure P14.3-10
(i)

Figure P14.3-11
(ii)

Figure P14.3-12
(iii)

Figure P14.3-13
(iv)

Figure P14.3-14
(v)

Figure P14.3-15
(vi)

Figure P14.3-16
(vii)

Figure P14.3-17
(viii)

Figure P14.3-18
(ix)

Figure P14.3-19
(x)

Figure P14.3-20

P14.4
The spectrum analyzer discussed in the lecture computed the estimate of the magnitude of the Fourier transform of $x_{s}(t)$ by taking samples of $x_{s}(t)$ at equally spaced intervals T, stopping after N samples, and computing the discrete-time Fourier transform of the N-point sequence.

Thus,

$$
X(\Omega)=\sum_{n=0}^{N-1} x[n] e^{-j \Omega n}, \quad \text { where } x[n]=x_{s}(n T)
$$

(a) Suppose $x_{s}(t)=\cos \omega_{0} t$. Find and sketch $|X(\Omega)|$.
(b) In any practical system, $X(\Omega)$ can be explicitly calculated only at a finite set of Ω. A common choice is

$$
\omega_{k}=\frac{2 \pi k}{N} \quad \text { for } K=0, \ldots, N-1
$$

For the following situations, sketch

$$
\left|X\left(\frac{2 \pi k}{N}\right)\right| \quad \text { for } K=0, \ldots, N-1
$$

if $x_{s}(t)=\cos \omega_{0} t$.
(i) $\quad N=5, \quad \omega_{0}=\frac{2 \pi}{T}\left(\frac{2}{5}\right)$
(ii) $\quad N=5, \quad \omega_{0}=\frac{2 \pi}{T}\left(\frac{3}{10}\right)$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

