16 Sampling

Solutions to

Recommended Problems

S16.1
If $\omega_{0}=\pi \times 10^{3}$, then

$$
\cos \left(\omega_{0} n \times 10^{-3}\right)=\cos (\pi n)=(-1)^{n}
$$

Similarly, for $\omega_{0}=3 \pi \times 10^{-3}$ and $\omega_{0}=5 \pi \times 10^{-3}$,

$$
\cos \left(\omega_{0} n \times 10^{-3}\right)=(-1)^{n}
$$

S16.2
The sampling function

$$
p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T), \quad T=\frac{1}{3}
$$

has a spectrum given by

$$
\begin{aligned}
P(\omega) & =\frac{2 \pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right) \\
& =6 \pi \sum_{n=-\infty}^{\infty} \delta(\omega-6 \pi k),
\end{aligned}
$$

shown in Figure S16.2-1.

Figure S16.2-1
$\cos \left(\omega_{0} t\right)$ has a spectrum given by $\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)$, shown in Figure S16.2-2.

Figure S16.2-2

From the convolution theorem

$$
X_{p}(\omega)=\frac{1}{2 \pi} P(\omega) *\left[\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)\right]
$$

Hence, it is straightforward to find $X_{p}(\omega)$.
(a) (i) For $\omega_{0}=\pi$:

Figure S16.2-3
(ii) For $\omega_{0}=2 \pi$:

(iii) For $\omega_{0}=3 \pi$:

Figure S16.2-5
(iv) For $\omega_{0}=5 \pi$:

Figure S16.2-6
(b) From part (a), it is clear that (i) and (iv) are identical.

S16.3
The signal $x(t)=\cos \left(\omega_{0} t+\theta\right)$, where $\omega_{0}=2 \pi f_{0}$, can be written as

$$
x(t)=\frac{1}{2} e^{j \theta} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \theta} e^{-j \omega_{0} t}
$$

and the spectrum of $x(t)$ is given by

$$
X(\omega)=\pi e^{j \theta} \delta\left(\omega-\omega_{0}\right)+\pi e^{-j \theta} \delta\left(\omega+\omega_{0}\right)
$$

The spectrum of $p(t)$ is given by

$$
P(\omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)
$$

Therefore, the spectrum of $x_{p}(t)$ is

$$
X_{p}(\omega)=\frac{1}{2 \pi}\left(\frac{2 \pi^{2}}{T}\right)\left[\sum_{k=-\infty}^{\infty} e^{j \theta} \delta\left(\omega-\frac{2 \pi k}{T}-\omega_{0}\right)+e^{-j \theta} \delta\left(\omega-\frac{2 \pi k}{T}+\omega_{0}\right)\right]
$$

and the spectrum of $X_{r}(\omega)$ is given by

$$
X_{r}(\omega)=H(\omega) X_{p}(\omega)
$$

(a) $\quad \omega_{0}=2 \pi \times 250, \quad \theta=\frac{\pi}{4}, \quad T=10^{-3}$,

$$
\begin{aligned}
X_{p}(\omega)=\frac{\pi}{T} \sum_{k=-\infty}^{\infty} & {\left[e^{j \theta} \delta\left(\omega-2 \pi \times 10^{3} k-2 \pi \times 250\right)\right.} \\
& \left.+e^{-j \theta} \delta\left(\omega-2 \pi \times 10^{3} k+2 \pi \times 250\right)\right]
\end{aligned}
$$

Hence, only the $k=0$ term is passed by the filter:

$$
X_{r}(\omega)=\pi\left[e^{j \theta} \delta(\omega-2 \pi \times 250)+e^{-j \theta} \delta(\omega+2 \pi \times 250)\right]
$$

and

$$
\begin{aligned}
x_{r}(t) & =\frac{1}{2} e^{j \theta} e^{j 2 \pi \times 250 t}+\frac{1}{2} e^{-j \theta} e^{-j 2 \pi \times 250 t} \\
& =\cos (2 \pi \times 250 t+\theta) \\
& =\cos \left(2 \pi \times 250 t+\frac{\pi}{4}\right)
\end{aligned}
$$

(b) $\quad \omega_{0}=2 \pi \times 750 \mathrm{~Hz}, \quad T=10^{-3}$,

$$
\begin{aligned}
X_{p}(\omega)=\frac{\pi}{T} \sum_{k=-\infty}^{\infty} & {\left[e^{j \theta} \delta\left(\omega-2 \pi \times 10^{3} k-2 \pi \times 750\right)\right.} \\
& +e^{\left.-j \delta \delta\left(\omega-2 \pi \times 10^{3} k+2 \pi \times 750\right)\right]}
\end{aligned}
$$

Only the $k= \pm 1$ term has nonzero contribution:

$$
X_{r}(\omega)=\frac{\pi}{T}\left[e^{j \theta} \delta(\omega+2 \pi \times 250)+e^{-j \theta} \delta(\omega-2 \pi \times 250)\right]
$$

Hence,

$$
\begin{aligned}
x_{r}(t) & =\cos (2 \pi \times 250 t-\theta) \\
& =\cos \left(2 \pi \times 250 t-\frac{\pi}{2}\right)
\end{aligned}
$$

(c) $\quad \omega_{0}=2 \pi \times 500, \quad \theta=\frac{\pi}{2}, \quad T=10^{-3}$,

$$
\begin{aligned}
X_{p}(\omega)=\frac{\pi}{T} \sum_{k=-\infty}^{\infty} & {\left[e^{j \theta} \delta\left(\omega-2 \pi \times 10^{3} k-2 \pi \times 500\right)\right.} \\
& +e^{\left.-j \delta \delta\left(\omega-2 \pi \times 10^{3} k+2 \pi \times 500\right)\right]}
\end{aligned}
$$

Since $H(\omega)=0$ at $\omega=2 \pi \times 500$, the output is zero: $x_{r}(t)=0$.

S16.4

$$
\text { (a) } \begin{aligned}
x_{p}(t) & =\sum_{n=-\infty}^{\infty} x(t) \delta(t-2 \Delta n)-\sum_{n=-\infty}^{\infty} x(t) \delta(t-\Delta-2 \Delta n) \\
& =x(t)\left[\sum_{n=-\infty}^{\infty} \delta(t-2 \Delta n)-\sum_{n=-\infty}^{\infty} \delta(t-\Delta-2 \Delta n)\right]
\end{aligned}
$$

By the convolution theorem,

$$
\begin{aligned}
X_{p}(\omega)= & \frac{1}{2 \pi} X(\omega) * \frac{2 \pi}{2 \Delta} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{2 \Delta}\right) \\
& -\frac{1}{2 \pi} X(\omega) * \frac{2 \pi}{2 \Delta} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{2 \Delta}\right) e^{-j \omega \Delta} \\
= & X(\omega) *\left[\frac{1}{2 \Delta} \sum_{n=-\infty}^{\infty}\left(1-e^{-j \pi n}\right) \delta\left(\omega-\frac{n \pi}{\Delta}\right)\right] \\
= & X(\omega) *\left[\frac{1}{2 \Delta} \sum_{n=-\infty}^{\infty}\left(1-(-1)^{n}\right) \delta\left(\omega-\frac{n \pi}{\Delta}\right)\right]
\end{aligned}
$$

$X_{p}(\omega)$ is sketched in Figure S16.4-1 and $Y(\omega)$ is sketched in Figure S16.4-2.

Figure S16.4-1

Figure S16.4-2
(b)

Figure S16.4-3
(c)

Figure S16.4-4
(d) Δ is maximum when π / Δ is minimum. From part (a) we see that aliasing is avoided in $X_{p}(\omega)$ if $\omega_{M} \leq \pi / \Delta$. Hence, $\Delta_{\max }=\pi / \omega_{M}$.
(a) The transform of the sampled function appears as in Figure S16.5-1.

Hence, (a) matches (i).
(b)

Figure S16.5-2
Hence, (b) does not match any.
(c) Matches (ii).
(d)

Figure S16.5-3
Hence, (d) does not match any.

S16.6
Since the input $x_{p}(t)$ cannot be distinguished for certain values of ω, the output also should not be distinguishable for certain values of ω. Hence, $Q(\omega)$ must be periodic in ω. Therefore, Figure P16.6-3 is a possible candidate, but Figure P16.6-2 is not.

Solutions to Optional Problems

$\underline{\mathbf{S 1 6 . 7}}$

Figure S16.7-1
Note that as T increases, $(2 \pi / T)-\omega_{2}$ approaches $\omega=0$. Also, there is aliasing when $2 \omega_{1}-\omega_{2}<(2 \pi / T)-\omega_{2}<\omega_{2}$. If $2 \omega_{1}-\omega_{2} \geq 0$ (as given in the problem), then it is easy to see that there is no aliasing when $0 \leq(2 \pi / T)-\omega_{2} \leq 2 \omega_{1}-\omega_{2}$. For maximum T, we choose a minimum allowable value of $2 \pi / T$:

$$
\frac{2 \pi}{T_{\max }}=\omega_{2} \rightarrow T_{\max }=\frac{2 \pi}{\omega_{2}},
$$

which is sampling at half the Nyquist rate. $X_{p}(\omega)$ for this case is given in Figure S16.7-2.

Figure S16.7-2
Hence,

$$
A=T, \quad \omega_{b}=2 \pi / T, \quad \omega_{a}=\omega_{1}
$$

S16.8

We are given the system shown in Figure S16.8-1.

Figure S16.8-1
(a) $X(\omega)$ and $X_{1}(\omega)$ are as shown in Figure S16.8-2. $X_{2}(\omega)$ is as shown in Figure S16.8-3, and $X_{p}(\omega)$ is therefore as given in Figure S16.8-4.

Figure S16.8-2

Figure S16.8-3

Figure S16.8-4
(b) $2 \pi / T_{\max }$ equals the Nyquist rate for $X_{2}(\omega)$:

$$
\frac{2\left(\omega_{2}-\omega_{1}\right)}{2}=\omega_{2}-\omega_{1}
$$

Hence,

$$
T_{\max }=\frac{2 \pi}{\left(\omega_{2}-\omega_{1}\right)}
$$

(c)

Figure S16.8-5

S16.9
The composite waveform spectrum is given in Figure S16.9-1.

We can alias the noise region to get maximum T. This corresponds to the aliased spectrum, shown in Figure S16.9-2.

Figure S16.9-2
The value of T is given by

$$
\frac{2 \pi}{T}=3 W \rightarrow T_{\max }=\frac{2 \pi}{3 W}
$$

The value of A is $T_{\text {max }}$ for $y(t)=x(t)$.

The spectra of $x_{1,2}(t)$, where $T=\pi / W$, given in Figures S16.10-1 and S16.10-2, could have generated $x_{r}(t)$:

Figure S16.10-1

Figure S16.10-2

S16.11
(a) From the sampling theorem, $2 \pi / T \geq 2 W$. Hence,

$$
T \leq \frac{\pi}{W} \rightarrow T_{\max }=\frac{\pi}{W}
$$

Since

$$
X_{p}(\omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(\omega-k \frac{2 \pi}{T}\right)
$$

we require $A=T$ for $x_{r}(t)=x(t)$.
The minimum value of W_{c} is W so that we do not lose any information, and the maximum value of W_{c} is $(2 \pi / T)-W$ to avoid periodic spectral contribution.
(b) (i) $\quad X(\omega)=0$ for $|\omega|>W$. Hence,

$$
T_{\max }=\frac{\pi}{W}, \quad A=T, \quad W<W_{c}<\frac{2 \pi}{T}-W
$$

(ii) $\quad X(\omega)=0$ for $|\omega|>2 W$. Hence,

$$
T_{\max }=\frac{\pi}{2 W}, \quad A=T, \quad 2 W<W_{c}<\frac{2 \pi}{T}-2 W
$$

(iii) $X(\omega)=0$ for $|\omega|>3 W$. Hence,

$$
T_{\max }=\frac{\pi}{3 W}, \quad A=T, \quad 3 W<W_{c}<\frac{2 \pi}{T}-3 W
$$

(iv) $X(\omega)=0$ for $|\omega|>W / 10$. Hence,

$$
T_{\max }=\frac{10 \pi}{W}, \quad A=T, \quad \frac{W}{10}<W_{c}<\frac{2 \pi}{T}-\frac{W}{10}
$$

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

