20 The Laplace Transform

Solutions to Recommended Problems

S20.1
(a) The Fourier transform of the signal does not exist because of the presence of growing exponentials. In other words, $x(t)$ is not absolutely integrable.
(b) (i) For the case $\sigma=1$, we have that

$$
x(t) e^{-\sigma t}=3 e^{t} u(t)+4 e^{2 t} u(t)
$$

Although the growth rate has been slowed, the Fourier transform still does not converge.
(ii) For the case $\sigma=2.5$, we have that

$$
x(t) e^{-o t}=3 e^{-0.5 t} u(t)+4 e^{0.5 t} u(t)
$$

The first term has now been sufficiently weighted that it decays to 0 as t goes to infinity. However, since the second term is still growing exponentially, the Fourier transform does not converge.
(iii) For the case $\sigma=3.5$, we have that

$$
x(t) e^{-\sigma t}=3 e^{-1.5 t} u(t)+4 e^{-0.5 t} u(t)
$$

Both terms do decay as t goes to infinity, and the Fourier transform converges. We note that for any value of $\sigma>3.0$, the signal $x(t) e^{-\sigma t}$ decays exponentially, and the Fourier transform converges.
(c) The Laplace transform of $x(t)$ is

$$
X(s)=\frac{3}{s-2}+\frac{4}{s-3}=\frac{7\left(s-\frac{17}{7}\right)}{(s-2)(s-3)}
$$

and its pole-zero plot and ROC are as shown in Figure S20.1.

Note that if $\sigma>3.0, s=\sigma+j \omega$ is in the region of convergence because, as we showed in part (b)(iii), the Fourier transform converges.
(a) $X(s)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-s t} d t=\frac{1}{s+a}$

The Laplace transform converges for $\operatorname{Re}\{s\}+a>0$, so

$$
\sigma+a>0, \quad \text { or } \quad \sigma>-a
$$

as shown in Figure S20.2-1.

Figure S20.2-1
(b) $X(s)=\frac{1}{s+a}$

The Laplace transform converges for $\operatorname{Re}\{s\}+a>0$, so

$$
\sigma+a>0, \quad \text { or } \quad \sigma>-a
$$

as shown in Figure S20.2-2.

Figure S20.2-2
(c) $X(s)=\int_{-\infty}^{\infty}-e^{-a t} u(-t) e^{-s t} d t=\int_{-\infty}^{0}-e^{-(s+a) t} d t=\left.\frac{e^{-(s+a) t}}{s+a}\right|_{-\infty} ^{0}$

$$
=\frac{1}{s+a}
$$

if $R e\{s\}+a<0, \sigma+a<0, \sigma<-a$.

$\mathbf{S 2 0 . 3}$
(a) (i) Since the Fourier transform of $x(t) e^{-t}$ exists, $\sigma=1$ must be in the ROC. Therefore only one possible ROC exists, shown in Figure S20.3-1.

(ii) We are specifying a left-sided signal. The corresponding ROC is as given in Figure S20.3-2.

(iii) We are specifying a right-sided signal. The corresponding ROC is as given in Figure S20.3-3.
Figure S20.3-3
(b) Since there are no poles present, the ROC exists everywhere in the s plane.
(c) (i) $\sigma=1$ must be in the ROC. Therefore, the only possible ROC is that shown in Figure S20.3-4.

Figure S20.3-4
(ii) We are specifying a left-sided signal. The corresponding ROC is as shown in Figure S20.3-5.

Figure S20.3-5
(iii) We are specifying a right-sided signal. The corresponding ROC is as given in Figure S20.3-6.

(d) (i) $\quad \sigma=1$ must be in the ROC. Therefore, the only possible ROC is as shown in Figure S20.3-7.

(ii) We are specifying a left-sided signal. The corresponding ROC is as shown in Figure S20.3-8.

(iii) We are specifying a right-sided signal. The corresponding ROC is as shown in Figure S20.3-9.

Figure S20.3-9

Constraint on ROC for Pole-Zero Pattern

$\boldsymbol{x}(\boldsymbol{t})$	(a)	(b)	(c)	(d)
(i)Fourier transform of $x(t) e^{-t}$ converges	$-2<\sigma<2$	Entire s plane	$\sigma>-2$	$\sigma>0$
(ii) $x(t)=0$, $t>10$	$\sigma<-2$	Entire s plane	$\sigma<-2$	$\sigma<0$
(iii) $x(t)=0$, $t<0$	$\sigma>2$	Entire s plane	$\sigma>-2$	$\sigma>0$

Table S20.3

S20.4
(a) For $x(t)$ right-sided, the ROC is to the right of the rightmost pole, as shown in Figure S20.4-1.

Figure S20.4-1

Using partial fractions,

$$
X(s)=\frac{1}{(s+1)(s+2)}=\frac{1}{s+1}-\frac{1}{s+2}
$$

so, by inspection,

$$
x(t)=e^{-t} u(t)-e^{-2 t} u(t)
$$

(b) For $x(t)$ left-sided, the ROC is to the left of the leftmost pole, as shown in Figure S20.4-2.

Figure S20.4-2
Since

$$
X(s)=\frac{1}{s+1}-\frac{1}{s+2}
$$

we conclude that

$$
x(t)=-e^{-t} u(-t)-\left(-e^{-2 t} u(-t)\right)
$$

(c) For the two-sided assumption, we know that $x(t)$ will have the form

$$
f_{1}(t) u(-t)+f_{2}(t) u(t)
$$

We know the inverse Laplace transforms of the following:

$$
\begin{aligned}
\frac{1}{s+1} & = \begin{cases}e^{-t} u(t), & \text { assuming right-sided, } \\
-e^{-t} u(-t), & \text { assuming left-sided }\end{cases} \\
\frac{1}{s+2} & = \begin{cases}e^{-2 t} u(t), & \text { assuming right-sided } \\
-e^{-2 t} u(-t), & \text { assuming left-sided }\end{cases}
\end{aligned}
$$

Which of the combinations should we choose for the two-sided case? Suppose we choose

$$
x(t)=e^{-t} u(t)+\left(-e^{-2 t}\right) u(-t)
$$

We ask, For what values of σ does $x(t) e^{-\sigma t}$ have a Fourier transform? And we see that there are no values. That is, suppose we choose $\sigma>-1$, so that the first term has a Fourier transform. For $\sigma>-1, e^{-2 t} e^{-\sigma t}$ is a growing exponential as t goes to negative infinity, so the second term does not have a Fourier transform. If we increase σ, the first term decays faster as t goes to infinity, but
the second term grows faster as t goes to negative infinity. Therefore, choosing $\sigma>-1$ will not yield a Fourier transform of $x(t) e^{-\sigma t}$. If we choose $\sigma \leq-1$, we note that the first term will not have a Fourier transform. Therefore, we conclude that our choice of the two-sided sequence was wrong. It corresponds to the invalid region of convergence shown in Figure S20.4-3.

Figure S20.4-3
If we choose the other possibility,

$$
x(t)=-e^{-t} u(-t)-e^{-2 t} u(t)
$$

we see that the valid region of convergence is as given in Figure S20.4-4.

Figure S20.4-4

There are two ways to solve this problem.

Method 1

This method is based on recognizing that the system input is a superposition of eigenfunctions. Specifically, the eigenfunction property follows from the convolution integral

$$
y(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
$$

Now suppose $x(t)=e^{a t}$. Then

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) e^{a(t-\tau)} d \tau=e^{a t} \int_{-\infty}^{\infty} h(\tau) e^{-a \tau} d \tau
$$

Now we recognize that

$$
\int_{-\infty}^{\infty} h(\tau) e^{-a \tau} d \tau=\left.H(s)\right|_{s=a}
$$

so that if $x(t)=e^{a t}$, then

$$
y(t)=\left[\left.H(s)\right|_{s=a}\right] e^{a t}
$$

i.e., $e^{a t}$ is an eigenfunction of the system.

Using linearity and superposition, we recognize that if

$$
x(t)=e^{-t / 2}+2 e^{-t / 3}
$$

then

$$
y(t)=\left.e^{-t / 2} H(s)\right|_{s=-1 / 2}+\left.2 e^{-t / 3} H(s)\right|_{s=-1 / 3}
$$

so that

$$
y(t)=2 e^{-t / 2}+3 e^{-t / 3} \quad \text { for all } t
$$

Method 2

We consider the solution of this problem as the superposition of the response to two signals $x_{1}(t), x_{2}(t)$, where $x_{1}(t)$ is the noncausal part of $x(t)$ and $x_{2}(t)$ is the causal part of $x(t)$. That is,

$$
\begin{aligned}
& x_{1}(t)=e^{-t / 2} u(-t)+2 e^{-t / 3} u(-t) \\
& x_{2}(t)=e^{-t / 2} u(t)+2 e^{-t / 3} u(t)
\end{aligned}
$$

This allows us to use Laplace transforms, but we must be careful about the ROCs.
Now consider $\mathcal{L}\left\{x_{1}(t)\right\}$, where $\mathcal{L}\{\cdot\}$ denotes the Laplace transform:

$$
\mathcal{L}\left\{x_{1}(t)\right\}=X_{1}(s)=-\frac{1}{s+\frac{1}{2}}-\frac{2}{s+\frac{1}{3}}, \quad \operatorname{Re}\{s\}<-\frac{1}{2}
$$

Now since the response to $x_{1}(t)$ is

$$
y_{1}(t)=\mathcal{L}^{-1}\left\{X_{1}(s) H(s)\right\}
$$

then

$$
\begin{aligned}
Y_{1}(s) & =-\frac{1}{(s+1)\left(s+\frac{1}{2}\right)}-\frac{2}{\left(s+\frac{1}{3}\right)(s+1)}, \quad-1<\operatorname{Re}\{s\}<-\frac{1}{2} \\
& =\frac{2}{s+1}+\frac{-2}{s+\frac{1}{2}}+\frac{-3}{s+\frac{1}{3}}+\frac{3}{s+1} \\
& =\frac{5}{s+1}-\frac{2}{s+\frac{1}{2}}-\frac{3}{s+\frac{1}{3}}
\end{aligned}
$$

So

$$
y_{1}(t)=5 e^{-t} u(t)+2 e^{-t / 2} u(-t)+3 e^{-t / 3} u(-t)
$$

The pole-zero plot and associated ROC for $Y_{1}(s)$ is shown in Figure S20.5-1.

Next consider the response $y_{2}(t)$ to $x_{2}(t)$:

$$
\begin{aligned}
& x_{2}(t)=e^{-t / 2} u(t)+2 e^{-t / 3} u(t) \\
& X_{2}(s)=\frac{1}{s+\frac{1}{2}}+\frac{2}{s+\frac{1}{3}}, \quad \operatorname{Re}\{s\}>-\frac{1}{3} \\
& Y_{2}(s)=X_{2}(s) H(s)=\frac{1}{\left(s+\frac{1}{2}\right)(s+1)}+\frac{2}{\left(s+\frac{1}{3}\right)(s+1)}, \\
& Y_{2}(s)=\frac{2}{s+\frac{1}{2}}+\frac{-2}{s+1}+\frac{3}{s+\frac{1}{3}}+\frac{-3}{s+1},
\end{aligned}
$$

So

$$
y_{2}(t)=-5 e^{-t} u(t)+2 e^{-t / 2} u(t)+3 e^{-t / 3} u(t)
$$

The pole-zero plot and associated ROC for $Y_{2}(s)$ is shown in Figure S20.5-2.

Figure S20.5-2
Since $y(t)=y_{1}(t)+y_{2}(t)$, then

$$
y(t)=2 e^{-t / 2}+3 e^{-t / 3} \quad \text { for all } t
$$

(a) Since

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

and $s=\sigma+j \omega$, then

$$
\left.X(s)\right|_{s=\sigma+j \omega}=\int_{-\infty}^{\infty} x(t) e^{-\sigma t} e^{-j \omega t} d t
$$

We see that the Laplace transform is the Fourier transform of $x(t) e^{-\sigma t}$ from the definition of the Fourier analysis formula.
(b) $x(t) e^{-\sigma t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left.X(s)\right|_{\sigma+j \omega}\right] e^{j \omega t} d \omega$

This result is the inverse Fourier transform, or synthesis equation. So

$$
\begin{aligned}
x(t) & =e^{\sigma t} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left.X(s)\right|_{\sigma+j \omega}\right] e^{j \omega t} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left.X(s)\right|_{\sigma+j \omega}\right] e^{(\sigma+j \omega) t} d \omega
\end{aligned}
$$

and letting $s=\sigma+j \omega$ yields $d s=j d \omega$:

$$
x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) e^{s t} d s
$$

Solutions to

Optional Problems

S20.7
(a) $X(s)=\frac{1}{s+1}, \quad \operatorname{Re}\{s\}>-1$

Therefore, $x(t)$ is right-sided, and specifically

$$
x(t)=e^{-t} u(t)
$$

(b) $X(s)=\frac{1}{s+1}, \quad \operatorname{Re}\{s\}<-1$

Therefore,

$$
x(t)=-e^{-t} u(-t)
$$

(c) $X(s)=\frac{s}{s^{2}+4}, \quad \operatorname{Re}\{s\}>0$

Since

$$
\begin{aligned}
e^{j \omega_{0} t} & \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s-j \omega_{0}} \\
e^{-j \omega_{0} t} & \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+j \omega_{0}} \\
\mathcal{L}\left\{\cos \left(\omega_{0} t\right) u(t)\right\} & =\mathcal{L}\left\{\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}\right\}=\frac{1}{2}\left(\frac{1}{s-j \omega_{0}}+\frac{1}{s+j \omega_{0}}\right) \\
\mathcal{L}\left\{\cos \left(\omega_{0} t\right) u(t)\right\} & =\frac{s}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

So

$$
\text { if } X(s)=\frac{s}{s^{2}+4}, \quad \text { then } x(t)=\cos (2 t) u(t)
$$

(d) $X(s)=\frac{s+1}{s^{2}+5 s+6}=\frac{s+1}{(s+2)(s+3)}=\frac{-1}{s+2}+\frac{2}{s+3}$, so

$$
x(t)=-e^{-2 t} u(t)+2 e^{-3 t} u(t)
$$

(e) $X(s)=\frac{s+1}{(s+2)(s+3)}=\frac{-1}{s+2}+\frac{2}{s+3}$, $x(t)=e^{-2 t} u(-t)-2 e^{-3 t} u(-t)$
(f) $X(s)=\frac{s^{2}-s+1}{s^{2}(s-1)}, \quad 0<R e\{s\}<1$

$$
=\frac{1}{s-1}-\frac{1}{s(s-1)}+\frac{1}{s^{2}(s-1)}
$$

$$
=\frac{1}{s-1}+\frac{1}{s}+\frac{-1}{s-1}+\frac{-1}{s^{2}}+\frac{-1}{s}+\frac{1}{s-1}
$$

$$
=\frac{1}{s-1}-\frac{1}{s^{2}}
$$

$$
x(t)=-e^{t} u(-t)-t u(t)
$$

(g) $X(s)=\frac{s^{2}-s+1}{(s+1)^{2}}, \quad-1<R e\{s\}$
$=\frac{(s+1)^{2}-3 s}{(s+1)^{2}}=1-\frac{3 s}{(s+1)^{2}}$
$=1-\frac{3(s+1)}{(s+1)^{2}}+\frac{3}{(s+1)^{2}}$,
$x(t)=\delta(t)-3 e^{-t} u(t)+3 t e^{-t} u(t)$
(h) $X(s)=\frac{s+1}{(s+1)^{2}+4}$

Consider

$$
Y(s)=\frac{s}{s^{2}+4} \rightarrow y(t)=\cos (2 t) u(t) \quad \text { from part }(\mathrm{c})
$$

Now

$$
f(t) e^{-a t} \stackrel{\mathcal{L}}{\longleftrightarrow} F(s+a),
$$

so

$$
x(t)=e^{-t} \cos (2 t) u(t)
$$

The Laplace transform of an impulse $a \delta(t)$ is a.Therefore, if we expand a rational Laplace transform by dividing the denominator into the numerator, we require a constant term in the expansion. This will occur only if the numerator has order greater than or equal to the order of the denominator. Therefore, a necessary condition on the number of zeros is that it be greater than or equal to the number of poles.

This is only a necessary and not a sufficient condition as it is possible to construct a rational Laplace transform that has a numerator order greater than the
denominator order and that does not yield a constant term in the expansion. For example,

$$
X(s)=\frac{s^{2}+1}{s}=s+\frac{1}{s}
$$

which does not have a constant term. Therefore a necessary condition is that the number of zeros equal or exceed the number of poles.
(a) $x(t)=e^{-a t} u(t), \quad a<0$,
$X(s)=\frac{1}{s+a}$,
and the ROC is shown in Figure S20.9-1.

(b) $x(t)=-e^{a t} u(-t), \quad a>0$, $X(s)=\frac{1}{s-a}$,
and the ROC is shown in Figure S20.9-2.

Figure S20.9-2
(c) $x(t)=e^{a t} u(t), \quad a>0$, $X(s)=\frac{1}{s-a}$,
and the ROC is shown in Figure S20.9-3.

Figure S20.9-3
(d) $x(t)=e^{-a|t|}, \quad a>0$,

$$
=e^{-a t} u(t)+e^{a t} u(-t)
$$

$$
X(s)=\frac{1}{s+a}+\frac{-1}{s-a}
$$

and the ROC is shown in Figure S20.9-4.

(e) $x(t)=u(t)$,

$$
X(s)=\int_{0}^{\infty} e^{-s t} d t=\frac{1}{s}
$$

and the ROC is shown in Figure S20.9-5.

Figure S20.9-5
(f) $x(t)=\delta\left(t-t_{0}\right)$,
$X(s)=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-s t} d t=e^{-s t_{0}}$,
and the ROC is the entire s plane.
(g) $x(t)=\sum_{k=0}^{\infty} a^{k} \delta(t-k T)$,

$$
\begin{aligned}
X(s) & =\sum_{k=0}^{\infty} a^{k} \int_{-\infty}^{\infty} \delta(t-k T) e^{-s t} d t \\
& =\sum_{k=0}^{\infty} a^{k} e^{-s k T}=\frac{1}{1-a e^{-s T}}
\end{aligned}
$$

with ROC such that $\left|a e^{-s T}\right|<1$. Now

$$
a^{2} e^{-2 s T}<1 \rightarrow 2 \log a-2 s T<0 \rightarrow s>\frac{1}{T} \log a
$$

(h) $x(t)=\cos \left(\omega_{0} t+b\right) u(t)$

Using the identity

$$
\cos (a+b)=\cos a \cos b-\sin a \sin b
$$

we have that

$$
x(t)=\cos b \cos \left(\omega_{0} t\right) u(t)-\sin b \sin \left(\omega_{0} t\right) u(t)
$$

Using linearity and the transform pairs

$$
\begin{aligned}
& \cos \left(\omega_{0} t\right) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{s}{s^{2}+\omega_{0}^{2}}, \\
& \sin \left(\omega_{0} t\right) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}},
\end{aligned}
$$

we have

$$
\begin{aligned}
& X(s)=\cos b \frac{s}{s^{2}+\omega_{0}^{2}}-\sin b \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \\
& X(s)=\cos b \frac{\left[s-(\tan b) \omega_{0}\right]}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

and the ROC is shown in Figure S20.9-6.

Figure S20.9-6
(i) Consider

$$
\begin{aligned}
x_{1}(t) & =\sin \left(\omega_{0} t+b\right) u(t) \\
& =\left(\sin \omega_{0} t \cos b+\cos \omega_{0} t \sin b\right) u(t)
\end{aligned}
$$

Using linearity and the preceding $\sin \omega_{0} t, \cos \omega_{0} t$ pairs, we have

$$
\begin{aligned}
& X_{1}(s)=\cos b \frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}+\sin b \frac{s}{s^{2}+\omega_{0}^{2}}, \\
& X_{1}(s)=\sin b \frac{\left[s+(\cot b) \omega_{0}\right]}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

Using the property that

$$
f(t) e^{-a t} \stackrel{\mathcal{L}}{\longleftrightarrow} F(s+a),
$$

we have

$$
X(s)=\sin b \frac{\left[s+a+(\cot b) \omega_{0}\right]}{(s+a)^{2}+\omega_{0}^{2}}
$$

with the ROC as given in Figure S20.9-7.

Figure S20.9-7

$\mathbf{S 2 0 . 1 0}$

(a) $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$

Consider

$$
X_{1}(s)=\int_{-\infty}^{\infty} x(-t) e^{-s t} d t
$$

Letting $t=-t^{\prime}$, we have

$$
\begin{aligned}
X_{1}(s) & =\int_{-\infty}^{\infty} x\left(t^{\prime}\right) e^{s t^{\prime}} d t^{\prime} \\
& =X(-s)
\end{aligned}
$$

but $X_{1}(s)=X(s)$ since $x(t)=x(-t)$. Therefore, $X(s)=X(-s)$.
(b) $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$

Consider

$$
\begin{aligned}
X_{1}(s) & =\int_{-\infty}^{\infty}-x(-t) e^{-s t} d t \\
X_{1}(s) & =\int_{-\infty}^{\infty}-x\left(t^{\prime}\right) e^{s t^{\prime}} d t^{\prime} \\
& =-X(s)
\end{aligned}
$$

but $X_{1}(s)=X(s)$ since $x(t)=-x(-t)$. Therefore, $X(s)=-X(-s)$.
(c) We note that if $X(s)$ has poles, then it must be two-sided in order for $x(t)=$ $x(-t)$.

$$
\begin{align*}
X(s) & =\frac{K s}{(s+1)(s-1)} \tag{i}\\
X(-s) & =\frac{-K s}{(-s+1)(-s-1)}=\frac{-K s}{(s-1)(s+1)} \neq X(s), \\
\text { so } x(t) & \neq x(-t)
\end{align*}
$$

(ii)

$$
\begin{aligned}
X(s) & =\frac{K(s+1)(s-1)}{s} \\
X(-s) & =\frac{K(-s+1)(-s-1)}{-s} \neq X(s)
\end{aligned}
$$

Also, this pole pattern cannot have a two-sided ROC.
(iii)

$$
\begin{aligned}
X(s) & =\frac{K(s+j)(s-j)}{(s+1)(s-1)} \\
X(-s) & =\frac{K(-s+j)(-s-j)}{(-s+1)(-s-1)}=\frac{K(s-j)(s+j)}{(s-1)(s+1)}=X(s),
\end{aligned}
$$

so this can correspond to an even $x(t)$. The corresponding ROC must be two-sided, as shown in Figure S20.10-1.

(iv) This does not have any possible two-sided ROCs.
(d) We see from the results in part (c)(i) that $X(s)=-X(-s)$, so the result in part (c)(i) corresponds to an odd $x(t)$ with an ROC as given in Figure S20.10-2.

Parts (c)(ii) and (c)(iv) do not have any possible two-sided ROCs. Part (c)(iii) is even, as previously shown, and therefore cannot be odd.

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

