21 Continuous-Time Second-Order Systems

Solutions to
 Recommended Problems

S21.1
(a) $H_{2}(s)=\int_{-\infty}^{\infty}-e^{-a t} u(-t) e^{-s t} d t=-\int_{-\infty}^{0} e^{-(a+s) t} d t$ Following our previous arguments, we can integrate only if the function dies out as t goes to minus infinity. $e^{-x t}$ will die out as t goes to minus infinity only if $\operatorname{Re}\{x\}$ is negative. Thus we need $\operatorname{Re}\{a+s\}<0$ or $\operatorname{Re}\{s\}<-a$. For s in this range,

$$
H_{2}(s)=\frac{1}{a+s}
$$

(b) (i) $\quad h_{1}(t)$ has a pole at $-a$ and no zeros. Furthermore, since $a>0$, the pole must be in the left half-plane. Since $h_{1}(t)$ is causal, the ROC must be to the right of the rightmost pole, as given in D, Figure P21.1-4.
(ii) $\quad h_{2}(t)$ is left-sided; hence the ROC is to the left of the leftmost pole. Since a is positive, the pole is in the left half-plane, as shown in A, Figure P21.1-1.
(iii) $h_{3}(t)$ is right-sided and has a pole in the right half-plane, as given in E , Figure P21.1-5.
(iv) $\quad h_{4}(t)$ is left-sided and has a pole in the right half-plane, as shown in C, Figure P21.1-3.

For a signal to be stable, its ROC must include the $j \omega$ axis. Thus, C, D, and F qualify. B is an ROC that includes a pole, which is impossible; hence it corresponds to no signal.
(a) By definition,

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-t} e^{-s t} d t
\end{aligned}
$$

We limit the integral to $(0, \infty)$ because of $u(t)$, so

$$
X(s)=\int_{0}^{\infty} e^{-(1+s) t} d t=\left.\frac{-1}{1+s} e^{-(1+s) t}\right|_{0} ^{\infty}
$$

If the real part of $(1+s)$ is positive, i.e., $\operatorname{Re}\{s\}>-1$, then

$$
\lim _{t \rightarrow \infty} e^{-(1+s) t}=0
$$

Thus

$$
X(s)=\frac{0(-1)}{1+s}-\frac{1(-1)}{1+s}=\frac{1}{1+s}, \quad \operatorname{Re}\{s\}>-1
$$

The condition on $\operatorname{Re}\{s\}$ is the ROC and basically indicates the region for which $1 /(1+s)$ is equal to the integral defined originally. Similarly,

$$
H(s)=\int_{-\infty}^{\infty} e^{-2 t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-(2+s) t} d t=\frac{1}{s+2}, \quad R e\{s\}>-2
$$

(b) By the convolution property of the Laplace transform, $Y(s)=H(s) X(s)$ in a manner similar to the property of the Fourier transform. Thus,

$$
Y(s)=\frac{1}{(s+1)(s+2)}, \quad \operatorname{Re}\{s\}>-1,
$$

where the ROC is the intersection of individual ROCs.
(c) Here we can use partial fractions:

$$
\begin{aligned}
\frac{1}{(s+1)(s+2)} & =\frac{A}{s+1}+\frac{B}{s+2}, \\
A & =\left.Y(s)(s+1)\right|_{s=-1}=1, \\
B & =\left.Y(s)(s+2)\right|_{s=-2}=-1
\end{aligned}
$$

Thus,

$$
Y(s)=\frac{1}{s+1}-\frac{1}{s+2}, \quad \operatorname{Re}\{s\}>-1
$$

Recognizing the individual Laplace transforms, we have

$$
y(t)=e^{-t} u(t)-e^{-2 t} u(t)
$$

(a) The property to be derived is

$$
x\left(t-t_{0}\right) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s t_{0}} X(s),
$$

with the same ROC as $X(s)$.
Let $y(t)=x\left(t-t_{0}\right)$. Then

$$
Y(s)=\int_{-\infty}^{\infty} y(t) e^{-s t} d t=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-s t} d t
$$

Let $p=t-t_{0}$. Then $t=p+t_{0}$ and $d p=d t$. Substituting

$$
Y(s)=\int_{-\infty}^{\infty} x(p) e^{-s\left(p+t_{0}\right)} d p
$$

Since we are not integrating over s or t_{0}, we can remove the $e^{-s t_{0}}$ term,

$$
Y(s)=e^{-s t_{0}} \int_{-\infty}^{\infty} x(p) e^{-s p} d p=e^{-s t_{0}} X(s)
$$

Note that wherever $X(s)$ converges, the integral defining $Y(s)$ also converges; thus the ROC of $X(s)$ is the same as the ROC of $Y(s)$.
(b) Now we study one of the most useful properties of the Laplace transform.

$$
x_{1}(t) * x_{2}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_{1}(s) X_{2}(s),
$$

with the ROC containing $R_{1} \cap R_{2}$. Let

$$
y(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau
$$

Then

$$
\begin{aligned}
Y(s) & =\int_{t=-\infty}^{\infty} \int_{\tau=-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) e^{-s t} d \tau d t \\
& =\int_{\tau=-\infty}^{\infty} x_{1}(\tau) \int_{t=-\infty}^{\infty} x_{2}(t-\tau) e^{-s t} d t d \tau
\end{aligned}
$$

Suppose we are in a region of the s plane where $X_{2}(s)$ converges. Then using the property shown in part (a), we have

$$
\int_{-\infty}^{\infty} x_{2}(t-\tau) e^{-s t} d t=e^{-s \tau} X_{2}(s)
$$

Substituting, we have

$$
Y(s)=\int_{\tau=-\infty}^{\infty} x_{1}(\tau) e^{-s \tau} X_{2}(s) d \tau=X_{2}(s) \int_{-\infty}^{\infty} x_{1}(\tau) e^{-s \tau} d \tau
$$

We can associate this last integral with $X_{1}(s)$ if we are also in the ROC of $x_{1}(t)$. Thus $Y(s)=X_{2}(s) X_{1}(s)$ for s inside at least the region $R_{1} \cap R_{2}$. It could happen that the ROC is larger, but it must contain $R_{1} \cap R_{2}$.
(a) From the properties of the Laplace transform,

$$
Y(s)=X(s) H(s)
$$

A second relation occurs due to the differential equation. Since

$$
\frac{d^{k} x(t)}{d t^{k}} \stackrel{\mathcal{L}}{\longleftrightarrow} s^{k} X(s)
$$

and using the linearity property of the Laplace transform, we can take the Laplace transform of both sides of the differential equation, yielding

$$
s^{2} Y(s)-s Y(s)-2 Y(s)=X(s)
$$

Therefore,

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{s^{2}-s-2}=\frac{1}{(s-2)(s+1)}
$$

The pole-zero plot is shown in Figure S21.4-1.

(b) (i) For a stable system, the ROC must include the $j \omega$ axis. Thus the ROC must be as drawn in Figure S21.4-2.

Figure S21.4-2
(ii) For a causal system, the ROC must be to the right of the rightmost pole, as shown in Figure S21.4-3.

Figure S21.4-3
(iii) For a system that is not causal or stable, we are left with an ROC that is to the left of $s=-1$, as shown in Figure S21.4-4.

Figure S21.4-4
(c) To take the inverse Laplace transform, we use the partial fraction expansion:

$$
H(s)=\frac{1}{(s+1)(s-2)}=\frac{A}{s+1}+\frac{B}{s-2}=\frac{-\frac{1}{3}}{s+1}+\frac{\frac{1}{3}}{s-2}
$$

We now take the inverse Laplace transform of each term in the partial fraction expansion. Since the system is causal, we choose right-sided signals in both cases. Thus,

$$
h(t)=-\frac{1}{3} e^{-t} u(t)+\frac{1}{3} e^{+2 t} u(t)
$$

$\omega=0$: Since there is a zero at $s=0,|H(j 0)|=0$. You may think that the phase is also zero, but if we move slightly on the $j \omega$ axis, $\Varangle H(j \omega)$ becomes

$$
\text { (Angle to } s=0)-(\text { Angle to } s=-1)=\frac{\pi}{2}-0=\frac{\pi}{2}
$$

$\omega=1$: The distance to $s=0$ is 1 and the distance to $s=-1$ is $\sqrt{2}$. Thus

$$
|H(j 1)|=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
$$

The phase is

$$
\text { (Angle to } s=0)-(\text { Angle to } s=-1)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}=\Varangle H(j 1)
$$

$\omega=\infty$: The distance to $s=0$ and $s=-1$ is infinite; however, the ratio tends to 1 as ω increases. Thus, $|H(j \infty)|=1$. The phase is given by

$$
\frac{\pi}{2}-\frac{\pi}{2}=0
$$

The magnitude and phase of $H(j \omega)$ are given in Figure S21.5.

$\mathbf{S 2 1 . 6}$
The pole-zero plot is shown in Figure S21.6.

Figure 521.6
Because the zero at $s=-5$ is so far away from the $j \omega$ axis, it will have virtually no effect on $|H(j \omega)|$. Since there is a zero at $\omega=0$ and poles near $\omega=2$, we estimate a valley (actually a null) at $\omega=0$ and a peak at $\omega \simeq \pm 2$.

Solutions to
 Optional Problems

S21.7

(a) Let $y(t)$ be the system response to the excitation $x(t)$. Then the differential equation relating $y(t)$ to $x(t)$ is

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \zeta \omega_{n} \frac{d y(t)}{d t}+\omega_{n}^{2} y(t)=\omega_{n}^{2} x(t)
$$

Integrating twice, we have
$y(t)+2 \zeta \omega_{n} \int_{-\infty}^{t} y(\tau) d \tau+\omega_{n}^{2} \int_{-\infty}^{t} \int_{-\infty}^{\tau^{\prime}} y(\tau) d \tau d \tau^{\prime}=\omega_{n}^{2} \int_{-\infty}^{t} \int_{-\infty}^{\tau^{\prime}} x(\tau) d \tau d \tau^{\prime}$,
or
$y(t)=-2 \zeta \omega_{n} \int_{-\infty}^{t} y(\tau) d \tau-\omega_{n}^{2} \int_{-\infty}^{t} \int_{-\infty}^{\tau} y(\tau) d \tau d \tau^{\prime}+\omega_{n}^{2} \int_{-\infty}^{t} \int_{-\infty}^{\tau^{\prime}} x(\tau) d \tau d \tau^{\prime}$,
shown in Figure S21.7-1.

Figure S21.7-1

Recall that Figure S21.7-1 can be simplified as given in Figure S21.7-2.

Figure S21.7-2
(b) (i) For a constant ω_{n} and $0 \leq \zeta<1, H(s)$ has a conjugate pole pair on a circle centered at the origin of radius ω_{n}. As ζ changes from 0 to 1 , the poles move from close to the $j \omega$ axis to $-\omega_{n}$, as shown in Figures S21.7-3, S21.7-4, and S21.7-5.

Figure $\mathrm{S} 21.7-3$ shows that for $\zeta \simeq 0$ the pole is close to the $j \omega$ axis, so $|H(j \omega)|$ has a peak very near ω_{n}.

Figure S21.7-3

Figure S21.7-4 shows that the peaks are closer together and more spread out at $\zeta=0.5$.

Figure S21.7-5 shows that at $\zeta \simeq 1$ the poles are so close together and far from the $j \omega$ axis that $|H(j \omega)|$ has a single peak.

(ii) For constant ζ between 0 and 1, the poles are located on two straight lines. As ω_{n} increases, the peak frequency increases as well as the bandwidth, as indicated in Figures S21.7-6 and S21.7-7.

Figure S21.7-6

Figure S21.7-7
(a) (i) The parallel implementation of $H(s)$, shown in Figure S21.8-1, can be drawn directly from the form for $H(s)$ given in the problem statement. The corresponding differential equations for each section are as follows:

$$
\begin{aligned}
\frac{d^{2} y_{1}(t)}{d t^{2}}+\frac{d y_{1}(t)}{d t}+y_{1}(t) & =\frac{d x(t)}{d t}, \\
\frac{d^{2} y_{2}(t)}{d t^{2}}+\frac{2 d y_{2}(t)}{d t}+2 y(t) & =x(t), \\
y(t) & =y_{1}(t)+y_{2}(t)
\end{aligned}
$$

Figure S21.8-1
(ii) To generate the cascade implementation, shown in Figure S21.8-2, we first express $H(s)$ as a product of second-order sections. Thus,
$H(s)=\frac{s\left(s^{2}+2 s+2\right)+\left(s^{2}+s+1\right)}{\left(s^{2}+s+1\right)\left(s^{2}+2 s+2\right)}=\frac{s^{3}+3 s^{2}+3 s+1}{\left(s^{2}+s+1\right)\left(s^{2}+2 s+2\right)}$
Now we need to separate the numerator into two sections. In this case, the numerator equals $(s+1)^{3}$, so an obvious choice is

$$
(s+1)\left(s^{2}+2 s+1\right)
$$

Thus,

$$
H(s)=\left(\frac{s+1}{s^{2}+s+1}\right)\left(\frac{s^{2}+2 s+1}{s^{2}+2 s+2}\right)
$$

The corresponding differential equations are as follows:

$$
\begin{aligned}
\frac{d^{2} r(t)}{d t^{2}}+\frac{d r(t)}{d t}+r(t) & =x(t)+\frac{d x(t)}{d t} \\
\frac{d^{2} y(t)}{d t^{2}}+\frac{2 d y(t)}{d t}+2 y(t) & =\frac{d^{2} r(t)}{d t^{2}}+\frac{2 d r(t)}{d t}+r(t)
\end{aligned}
$$

Figure S21.8-2
(b) We see that we could have decomposed $H(s)$ as

$$
H(s)=\left(\frac{s^{2}+2 s+1}{s^{2}+s+1}\right)\left(\frac{s+1}{s^{2}+2 s+2}\right)
$$

Thus, the cascade implementation is not unique.
(a) Decompose $\sin \omega_{0} t$ as

$$
\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}
$$

Then

$$
x_{1}(t)=\sin \left(\omega_{0} t\right) u(t)=\frac{e^{j \omega_{0} t}}{2 j} u(t)-\frac{e^{-j \omega_{0} t}}{2 j} u(t)
$$

Using the transform pair given in the problem statement and the linearity property of the Laplace transform, we have

$$
\begin{aligned}
X_{1}(s) & =\frac{1}{2 j}\left[\frac{1}{s-j \omega_{0}}-\frac{1}{s+j \omega_{0}}\right] \\
& =\frac{1}{2 j} \frac{2 j \omega_{0}}{s^{2}+\omega_{0}^{2}}=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

with an ROC corresponding to $R e\{s\}>0$.
(b) $x_{2}(t)=e^{-2 t} \sin \left(\omega_{0} t\right) u(t)$. Since

$$
e^{-2 t} \sin \left(\omega_{0} t\right) u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X_{1}(s+2),
$$

the ROC is shifted by 2 . Therefore,

$$
e^{-2 t} \sin \left(\omega_{0} t\right) u(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{\omega_{0}}{(s+2)^{2}+\omega_{0}^{2}},
$$

and the ROC is $\operatorname{Re}\{s\}>-2$. Here we have used our answer to part (a).
(c) Since

$$
t x(t) \stackrel{\mathcal{L}}{\rightleftarrows}-\frac{d X(s)}{d s},
$$

with the same ROC as $X(s)$, then

$$
t e^{-2 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow}-\frac{d}{d s}\left[\frac{1}{(s+2)}\right]
$$

Thus

$$
t e^{-2 t} u(t) \stackrel{\mathcal{L}}{\underset{\leftrightarrow}{\leftrightarrows}}-\left[\frac{-1}{(s+2)^{2}}\right]=\frac{1}{(s+2)^{2}}
$$

with the ROC given by $\operatorname{Re}\{s\}>-2$.
(d) Here we use partial fractions:

$$
\begin{gather*}
\frac{s+1}{(s+2)(s+3)}=\frac{A}{s+2}+\frac{B}{s+3} \\
A=\left.\left[\frac{s+1}{s+3}\right]\right|_{s=-2}=-1, \quad B=\left.\left[\frac{s+1}{s+2}\right]\right|_{s=-3}=\frac{-2}{-1}=2 \\
\frac{s+1}{(s+2)(s+3)}=\frac{-1}{s+2}+\frac{2}{s+3} \tag{S21.9-1}
\end{gather*}
$$

The ROC associated with the first term of eq. (S21.9-1) is $\operatorname{Re}\{s\}>-2$ and the ROC associated with the second term is $\operatorname{Re}\{s\}>-3$ to be consistent with the given total ROC. Thus,

$$
x(t)=-e^{-2 t} u(t)+2 e^{-3 t} u(t)
$$

(e) From properties of the Laplace transform we know that

$$
x(t-T) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s T} X(s)
$$

with the same ROC as $X(s)$. Since

$$
e^{-3 t} u(t) \stackrel{\mathcal{L}}{\leftrightarrow} \frac{1}{s+3},
$$

with an ROC given by $\operatorname{Re}\{s\}>-3,\left(1-e^{-2 s}\right) /(s+3)$ must correspond to

$$
x(t)=e^{-3 t} u(t)-e^{-3(t-2)} u(t-2)
$$

(a) (1), (2): An impulse has a constant Fourier transform whose magnitude is unaffected by a time shift. Hence, the Fourier transform magnitudes of (1) and (2) are shown in (c).
(3), (5): A decaying exponential corresponds to a lowpass filter; hence, (3) could be (a) or (d). By comparing it with (5), we see that (5) corresponds to $k t e^{-a t} u(t)$, which has a double pole at $-a$. Thus, (5) is a steeper lowpass filter than (3). Hence, (3) corresponds to (d) and (5) corresponds to (a).
(4), (7): These signals are of the form $e^{-a t} \cos \left(\omega_{0} t\right) u(t)$. For larger a, the poles are farther to the left. Hence $|H(j \omega)|$ for larger a is less peaky. Thus, (4) corresponds to (f) and (7) corresponds to (g).
(6): If we convolve $x(t)=1$ with $h(t)$ given in (6), we find that the output is zero. Thus (6) corresponds to a null at $\omega=0$, either (b) or (h). Note that (6) can be thought of as an $h(t)$ given by (1) minus an $h(t)$ given by (3). Thus, the Fourier transform is the difference between a constant and a lowpass filter. Therefore, (6) is a highpass filter, or (b).
(b) (a), (d): These are simple lowpass filters that correspond to (i) or (ii). Since (a) is a steeper lowpass filter, we associate (a) with (ii) and (d) with (i).
(b), (h): These require a null at zero, and thus could correspond to (iii) or (viii). In the case of (iii), as ω increases, one pole-zero pair is canceled so that for large $\omega, H(s)$ looks like a lowpass filter. Hence, (b) corresponds to (viii) and (h) corresponds to (iii).
(c): Here we need a pole-zero plot that is an all-pass system. The only possible pole-zero plot is (vi).
(e): Here we need a null on the $j \omega$ axis, but not at $\omega=0$. The only possibility is (v).
(f), (g): These are resonant second-order systems that could correspond to (iv) or (vii). Since poles closer to the $j \omega$ axis lead to peakier Fourier transforms, (f) must correspond to (iv) and (g) to (vii).

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Signals and Systems
Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

