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Feedback Example:
The Inverted Pendulum

In this lecture, we analyze and demonstrate the use of feedback in a specific
system, the inverted pendulum. The system consists of a cart that can be
pulled foward or backward on a track. Mounted on the cart is an inverted pen-
dulum, i.e., a pendulum pivoted at its base and with the weight at the top. Con-
sequently, with the cart stationary, the pendulum is unstable; even if balanced
in unstable equilibrium, any external disturbance will cause the pendulum to
fall.

To balance the pendulum, the cart can be moved forward or backward
under the weighted rod. Thus, the forces acting on the system are the cart ac-
celeration and any external disturbances. In principle, if all of the external
disturbances are exactly specified (an unreasonable assumption) and if the
system dynamics are precisely understood, then the cart acceleration can be
specified in such a way as to maintain the rod in a vertical position. A more
reasonable approach to balancing the rod or, equivalently, stabilizing this un-
stable system, however, is to constantly measure the angle of the rod and
choose the cart acceleration based on this measurement. This then corre-
sponds to a feedback system in which the measured angle is fed back through
an appropriate choice of feedback dynamics to control the cart acceleration.

We carry out an analysis of the open-loop system and explore several
possible choices for the feedback dynamics. Under the assumption that the
angular displacement of the rod from perpendicular is kept small, the behav-
ior of the inverted pendulum can be described through a second-order linear
constant-coefficient differential equation, or equivalently through a system
function with two real-axis poles, one in the left half of the s-plane and the
other in the right half of the s-plane, and therefore associated with the system
instability. A first, more or less obvious, choice for the feedback dynamics is
to simply choose the cart acceleration proportional to the measured angle.
The resulting system function again has two poles, the positions of which are,
of course, dependent on the feedback gain. Examination of the locus of these
poles as a function of gain (often referred to as the root locus) shows that for
the feedback gain negative, the right half-plane pole moves even further into
the right half-plane so that the instability becomes even more severe. If the
feedback gain is greater than zero, as the gain increases the two poles move
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toward each other, meeting at the origin and then traveling along the imagi-
nary axis. The presence of a pole in the right half-plane indicates that even
with a very small input (such as a small displacement of the rod), the rod angle
will increase exponentially. With the poles on the imaginary axis, any dis-
placement will result in an oscillatory behavior. Consequently, the system re-
mains unstable for all values of the feedback gain.

A second type of feedback to consider corresponds to choosing the cart
acceleration proportional to the derivative of the angular displacement. This
choice is motivated by the possibility that perhaps the pendulum can be stabi-
lized by accelerating the cart faster if the angular displacement is increasing
faster. Examination of the root locus with derivative feedback demonstrates
again that for the feedback gain less than zero the system becomes increas-
ingly unstable while with the feedback gain greater than zero the system be-
comes more stable but is never completely stabilized. Finally, we consider a
combination of proportional plus derivative feedback, and in this case by ap-
propriate choice of the two gain factors the system can be stabilized.

The demonstration accompanying this lecture, besides being entertain-
ing, is hopefully very instructive. In addition to showing that the system can in
fact be stabilized by appropriate choice of feedback, we are able to show that
feedback is able to compensate for external disturbances and to changes in
the system dynamics.

Suggested Reading
Section 11.3, Root-Locus Analysis of Linear Feedback Systems, pages 700-
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Block diagram and
system function for
the open-loop system.
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Derivative feedback:

0(s) = X(s)
S2 + s(K 2 /L) - g/L
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