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DISCRETE-TIME SIGNALS AND SYSTEMS, PART 1

1. Lecture 2 - 36 minutes
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2. Correction

In the lecture I indicate that the sinusoidal sequence
A cos(w n + #) with w = 3ff/7 and # = - Tr/8 is not periodic. In fact it
is peri8dic although Rot with a period of 2rr/we. (See problem 2.1(a)).
For w0 = 3/7 the sinusoidal sequence will not be periodic.

3. Comments

In this lecture we introduce the class of discrete-time signals and

systems. The unit sample, unit step, exponential and sinusoidal

sequences are basic sequences which play an important role in the

analysis and representation of more complex sequences. The class of

discrete-time systems that we focus on is the class of linear shift-

invariant systems. The representation of this class of systems through

the convolution sum and some properties of convolution are developed.
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4. Reading

Text: Section 2.0 (page 8) through eq. (2.51) page 28 section 2.4.

5. Problems

Problem 2.1

Determine whether or not each of the following sequences is periodic.

If your answer is yes, determine the period.

(a) x(n) = A cos (- n-)

(b) x(n) = e (n/8 - f)

Problem 2.2

A sequence x(n) is shown below. Express x(n) as a linear combination

of weighted and delayed unit samples.
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Figure P2.2-1

Problem 2.3

For each of the following systems, y(n) denotes the output and x(n)

the input. Determine for each whether the specified input-output

relationship is linear and/or shift-invariant.

(a) y(n) = 2x(n) + 3

(b) y(n) = x(n) sin(2 n + )

(c) y(n) = (x(n)]2
n

(d) y (n) =, x x(m)
m=-_O
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Problem 2.4

For each of the following pairs of sequences, x(n) represents the

input to an LSI system with unit-sample response h(n). Determine

each output y(n). Sketch your results.
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The following formulas may be useful:

C a = , [a| < 1E 1-a
r=0

N-1 r 1-aN

aE 1-a , all a
r=0

Problem 2.5

The system shown below contains two linear shift-invariant subsystems

with unit sample responses h1 (n) and h2 (n), in cascade.

V(n) .. _ y (n)

h (n) = 6(n) - 6 (n - 3)
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(a) Let x(n) = u(n). Find ya (n) by first convolving x(n) with

h1 (n) and then convolving the result with h2 (n) i.e.

ya(n) = [x(n) * h1 (n)] * h 2 (n)

(b) Again let x(n) = u(n). Find yb(n) by convolving x(n) with the

result of the convolution of h1 (n) and h2 (n) i.e.

yb(n) = x(n) * [h1 (n) * h 2 (n)]

Your results for parts (a) and (b) should be identical, illustrating

the associative property of convolution.

Problem 2.6*

If the output of a system is the input multiplied by a complex constant

then that input function is called an eigenfunction of the system.

(a) Show that the function x(n) = zn, where z is a complex constant,

is an eigenfunction of a linear shift-invariant discrete-time system.

(b) By constructing a counterexample, show that z nu(n) is not an

eigenfunction of a linear shift-invariant discrete-time system.

* Asterisk indicates optional problem.
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