THE DISCRETE-TIME FOURIER TRANSFORM

Solution 4.1
The Fourier transform relation is given by
$x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} \quad$ thus $:$
(a) $x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} \delta(n-3) e^{-j \omega n}=e^{-j \omega 3}$
(b) $x\left(e^{j \omega}\right)=1+\frac{1}{2} e^{j \omega}+\frac{1}{2} e^{-j \omega}=1+\cos \omega$
(c) $x\left(e^{j \omega}\right)=\sum_{n=0}^{\infty} a^{n} e^{-j \omega n}=\sum_{n=0}^{\infty}\left(a e^{-j \omega}\right)^{n}=\frac{1}{1-a e^{-j \omega}}$
(d) $x\left(e^{j \omega}\right)=\sum_{n=-3}^{+3} e^{-j \omega n}=e^{j 3 \omega} \sum_{n=0}^{6} e^{-j \omega n}=\frac{\sin \left(\frac{7 \omega}{2}\right)}{\sin \left(\frac{\omega}{2}\right)}$

Solution 4.2
(a) In problem 2.4(c) we determined that the convolution of $\alpha^{n} u(n)$ and $\beta^{n} u(n)$ was given by
$y(n)=\left[\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}\right] u(n)$
$y(n)=\left[\frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha}\right] u(n)$

$$
=\left[\alpha^{n}\left(\frac{\alpha}{\alpha-\beta}\right)+\beta^{n}\left(\frac{-\beta}{\alpha-\beta}\right)\right] u(n)
$$

thus, $k_{1}=\frac{\alpha}{\alpha-\beta}$ and $k_{2}=\frac{\beta}{\beta-\alpha}$
(b) From problem 4.1 (c) it follows that
$H\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}$
and
$x\left(e^{j \omega}\right)=\frac{1}{1-\beta e^{-j \omega}}$

The Fourier transform of $Y(n)$ as obtained in (a)

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\sum_{n=0}^{\infty} \frac{\beta^{n+1}-\alpha^{n+1}}{\beta-\alpha} e^{-j \omega n} \\
& =\frac{\beta}{\beta-\alpha} \sum_{n=0}^{\infty} \beta^{n} e^{-j \omega n}-\frac{\alpha}{\beta-\alpha} \sum_{n=0}^{\infty} \alpha^{n} e^{-j \omega n} \\
& =\frac{\beta}{\beta-\alpha} \frac{1}{1-\beta e^{-j \omega}}-\frac{\alpha}{\beta-\alpha} \frac{1}{1-\alpha e^{-j \omega}} \\
& =\frac{1}{\left(1-\beta e^{-j \omega}\right)\left(1-\alpha e^{-j \omega}\right)}
\end{aligned}
$$

Solution 4.3
(a) $x_{a}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} k x(n) e^{-j \omega n}=k \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n}$

$$
=k x\left(e^{j \omega}\right)
$$

(b) $x_{b}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x\left(n-n_{0}\right) e^{-j \omega n}$

Making the substitution of variables
$\mathrm{m}=\mathrm{n}-\mathrm{n}_{0}$ or $\mathrm{n}=\mathrm{m}+\mathrm{n}_{0}$
$x_{b}\left(e^{j \omega}\right)=\sum_{m=-\infty}^{+\infty} x(m) e^{-j \omega\left(m+n_{0}\right)}=\sum_{m=-\infty}^{+\infty} e^{-j \omega n_{0}} 0 x(m) e^{-j \omega m}$
$=e^{-j \omega n_{0}} x\left(e^{j \omega}\right)$
(c) The transform of $x(n)$ is given by
$x\left(e^{j \omega}\right)=\sum^{+\infty} x(n) e^{-j \omega n}$
$n=-\infty$
thus $\frac{d x\left(e^{j \omega}\right)}{d \omega}=\sum_{n=-\infty}^{+\infty}(-j n) x(n) e^{-j \omega n}$
or

$$
\begin{aligned}
j \frac{d x\left(e^{j \omega}\right)}{d \omega} & =\sum_{n=-\infty}^{+\infty} n x(n) e^{-j \omega n} \\
& =x_{c}\left(e^{j \omega}\right)
\end{aligned}
$$

Solution 4.4
(a) $H_{a}(j \Omega)=\int_{-\infty}^{+\infty} h_{a}(t) e^{-j \Omega t} d t=\int_{0}^{\infty} a e^{-a t} e^{-j \Omega t} d t=\frac{a}{j \Omega+a}$

$$
\left|H_{a}(j \Omega)\right|^{2}=\frac{a^{2}}{\Omega^{2}+a^{2}} \quad \text {. Thus }|H(j \Omega)| \text { is as sketched below: }
$$

Figure S4.4-1
(b) $\quad h_{d}(n)=c a e^{-a n T} u(n)=c a\left(e^{-a T}\right)^{n} u(n)$
thus $H_{d}\left(e^{j \omega}\right)=\frac{c a}{1-e^{-a T} e^{-j \omega}} \quad$. For $H_{d}\left(e^{j 0}\right)=1, c=\frac{1-e^{-a T}}{a}$

With this choice of c
$\left|H_{d}\left(e^{j \omega}\right)\right|^{2}=\frac{\left(1-e^{-a T}\right)^{2}}{1-2 e^{-a T} \cos \omega+e^{-2 a T}}$
thus $\left|H_{d}\left(e^{j \omega}\right)\right|$ is:

Figure S4.4-2

Note in particular that while the frequency response of the continuous-time filter asymptomatically approaches zero the frequency response of the digital filter doesn't. However as the sampling period T decreases, the value of $\left|H_{d}\left(e^{j \omega}\right)\right|$ at $\omega=\pi$ decreases toward zero. The difference in the minimum values of $\left|H_{a}(j \Omega)\right|$ and $\left|H_{d}\left(e^{j \omega}\right)\right|$ is of course due to aliasing.

Solution 4.5

From the discussion in the lecture, we know that
$\tilde{X}_{A}(j \Omega)=\frac{1}{T} \sum_{r=-\infty}^{\infty} X_{A}\left(j \Omega+\frac{2 \pi r}{T}\right)$
and
$X\left(e^{j \omega}\right)=\left.\tilde{X}_{A}(j \Omega)\right|_{\Omega T}=\omega$

Let us assume that $X_{A}(j \Omega)$ has some arbitrary shape as indicated below. Since we are assuming that T is sufficiently small to prevent aliasing, $X_{A}(j \Omega)$ must be zero for $|\Omega| \geq \frac{\pi}{T}$. Then $\tilde{X}_{A}(j \Omega)$ and $X\left(e^{j \omega}\right)$ are as
shown in figure S4.5-1. $Y\left(e^{j \omega}\right)$ corresponding to the output of the filter and $\tilde{Y}_{A}(j \Omega)$ and $Y_{A}(j \Omega)$ follow in a straightforward way and are as indicated in figure $54.5-1$. Thus $Y_{A}(n)$ could be obtained directly by passing $x(n)$ through an ideal lowpass filter with unity gain in the passband and a cutoff frequency of $\frac{\pi}{4 T} \mathrm{rad} / \mathrm{sec}$. For the case in part (a) the cutoff frequency of the overall continuous-time filter is $\frac{\pi}{4} \times 10^{4} \mathrm{rad} / \mathrm{sec}$ and for the case in part (b) the cutoff frequency is $\frac{\pi}{8} \times 10^{4} \mathrm{rad} / \mathrm{sec}$.

Figure S4.5-1

Solution 4.6*
(1) and (2) can be verified by direct substitution into the inverse Fourier transform relation. (3) and (4) follow from (1) since $\operatorname{Re}[x(n)]=\frac{1}{2}\left[x(n)+x^{*}(n)\right\rfloor$ and $j \operatorname{Im}[x(n)]=\frac{1}{2}\left|x(n)-x^{*}(n)\right|$. (5) and (6) follow from (2) since $\operatorname{Re}\left[x\left(e^{j \omega}\right)\right]=\frac{1}{2}\left[x\left(e^{j \omega}\right)+x^{*}\left(e^{j \omega}\right)\right]$ and $j \operatorname{Im}\left[x\left(e^{j \omega}\right)\right]=\frac{1}{2}\left[x\left(e^{j \omega}\right)-x^{*}\left(e^{-j \omega}\right)\right]$.

Solution 4.7*
If $X\left(e^{j \omega}\right)$ denotes the Fourier transform of $x(n)$, then
$x(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \omega}\right) d \omega$

Thus, with $y(n)$ denoting the convolution of $f(n)$ and $g(n)$ and since $Y\left(e^{j \omega}\right)=F\left(e^{j \omega}\right) G\left(e^{j \omega}\right)$, we wish to show that

$$
y(0)=f(0) g(0)
$$

But $\quad y(n)=\sum_{k=-\infty}^{+\infty} f(k) g(n-k)$
so $\quad y(0)=\sum_{k=-\infty}^{+\infty} f(k) g(-k)$

Since $f(k)$ is zero for $k<0$ and $g(-k)$ is zero for $k>0$,
$\sum_{k=-\infty}^{+\infty} f(k) g(-k)=f(0) g(0)$

Solution 4.8*

(a) Method A:

Consider $x(n)$ as a unit-sample $\delta(n)$. Then
$g(n)=h(n)$ and $r(n)=\underset{+\infty}{h(n)} * g(-n)=\sum_{k=-\infty}^{+\infty} h(k) h(-n+k)$
Finally, $s(n)=r(-n)=\sum_{k=-\infty}^{+\infty} h(k) h(k+n)$
Consequently, $h_{l}(n)=\sum_{k=-\infty}^{+\infty} h(k) h(k+n)$
S4. 6

To show that this corresponds to zero phase, we wish to show that $h_{l}(n)=h_{1}(-n)$ since from Table 2.1 of the text with $h_{1}(n)$, if $h_{1}(n)=h_{1}(-n)$ then
$H_{1}\left(e^{j \omega}\right)=H_{1}^{*}\left(e^{j \omega}\right)$ and hence the frequency response is real.
$h_{1}(-n)=\sum_{k=-\infty}^{+\infty} h(k) h(k-n)$
letting $k-n=r$,
$h_{1}(-n)=\sum_{k=-\infty}^{+\infty} h(n+r) h(r)$
which is identical to $h_{1}(n)$.
Alternatively we can show that $h_{l}(n)$ corresponds to a zero-phase filter by arguing in the frequency domain.
Specifically,
Let $\quad \hat{g}(n)=g(-n)$. Then $\quad \hat{G}_{I}\left(e^{j \omega}\right)=G_{I}^{*}\left(e^{j \omega}\right)=x^{*}\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right)$
Also, $R\left(e^{j \omega}\right)=X^{*}\left(e^{j \omega}\right) H\left(e^{j \omega}\right) H^{*}\left(e^{j \omega}\right)=X^{*}\left(e^{j \omega}\right)\left|H\left(e^{j \omega}\right)\right|^{2}$
and $S\left(e^{j \omega}\right)=R^{*}\left(e^{j \omega}\right)$

$$
=X\left(e^{j \omega}\right)\left|H\left(e^{j \omega}\right)\right|^{2}
$$

Thus, $H_{1}\left(e^{j \omega}\right)=\left|H\left(e^{j \omega}\right)\right|^{2}$. Since $H_{1}\left(e^{j \omega}\right)$ is real, it has a zero phase characteristic.
(b) Method B:
$G\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
$R\left(e^{j \omega}\right)=x^{*}\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$
$Y\left(e^{j \omega}\right)=G\left(e^{j \omega}\right)+R^{*}\left(e^{j \omega}\right)$
$=X\left(e^{j \omega}\right)\left[H\left(e^{j \omega}\right)+H^{*}\left(e^{j \omega}\right)\right]$
$=X\left(e^{j \omega}\right)\left[2 \operatorname{Re} H\left(e^{j \omega}\right)\right]$
Therefore $H_{2}\left(e^{j \omega}\right)=2 \operatorname{Re} H\left(e^{j \omega}\right)=2\left|H\left(e^{j \omega}\right)\right| \cos \left[\left(\arg H\left(e^{j \omega}\right)\right]\right)$ and consequently is also zero phase.
(c) $H_{1}\left(e^{j \omega}\right)$ and $H_{2}\left(e^{j \omega}\right)$ are sketched below. Clearly method A is the preferable method.

Figure S4.8-1

Figure S4.8-2

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

