Z-TRANSFORM PROPERTIES

Solution 7.1
(a) - (iii)
(b) - (i)
(c) - (ii)

Solution 7.2

Figure S7.2-1

Figure S7.2-2
Shown above is the appropriate vector diagram, which we expand out below:

Figure S7.2-3

Let d_{1}, d_{2}, d_{3} and d_{4} denote the lengths of vectors (1), (2), (3) and (4) respectively. We wish to determine $\frac{d_{4}}{d_{2}}$. We know that vector (1) is at an angle of ω to the horizontal axis and that $d_{1}=1$. Therefore:
$d_{6}=\cos \omega$
$d_{3}=\sin \omega$
$d_{5}=\frac{1}{a}-d_{6}=\frac{1}{a}-\cos \omega$
then
$d_{2}^{2}=\left(d_{6}-a\right)^{2}+d_{3}^{2}=1+a^{2}-2 a \cos \omega$
Also,
$\overline{d_{4}^{2}}=d_{3}^{2}+d_{5}^{2}=1+\left(\frac{1}{a}\right)^{2}-\frac{2}{a} \cos \omega=\left(\frac{1}{a}\right)^{2}\left[1+a^{2}-2 a \cos \omega\right]$
Thus
$\frac{\mathrm{d}_{4}}{\mathrm{~d}_{2}}=\frac{1}{\mathrm{a}}$

Solution 7.3
(i)
$x(z)=\sum_{n=-\infty}^{+\infty} x(n) z^{-n}$
$x\left(\frac{1}{z}\right)=\sum_{n=-\infty}^{+\infty} x(n) z^{n}$
With the substitution of variables $m=-n$ in the above summation,
$x\left(\frac{1}{z}\right)=\sum_{m=-\infty}^{+\infty} x(-m) z^{-m}$
which we recognize as the z-transform of $x(-n)$.
(ii)
$x(z)=\sum_{n=-\infty}^{+\infty} x(n) z^{-n}$
$\frac{d x(z)}{d z}=\sum_{n=-\infty}^{+\infty}-n x(n) z^{-n-1}$
$-z \frac{d x(z)}{d z}=\sum_{n=-\infty}^{+\infty} n x(n) z^{-n}$

We recognize the right-hand side as the z-transform of $n x(n)$.

Solution 7.4
Letting $X(z)$ and $Y(z)$ denote the z-transforms of $X(n)$ and $y(n)$, and using the properties of z-transforms, the z-transform of the difference equation results in
$z^{-1} Y(z)-\frac{10}{3} Y(z)+z Y(z)=X(z)$
thus the system function $H(z)$ is
$H(z)=\frac{Y(z)}{X(z)}=\frac{1}{z^{-1}-\frac{10}{3}+z}=\frac{z^{-1}}{z^{-2}-\frac{10}{3} z^{-1}+1}$
$=\frac{z^{-1}}{\left(1-3 z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)}$

To determine the unit-sample response we can obtain the inverse transform of $\mathrm{H}(\mathrm{z})$ using any of the methods that we have discussed. For example, using contour integration,
$x(n)=\frac{1}{2 \pi j} \int_{c} \frac{z^{-1}}{\left(1-3 z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)} z^{n-1} d z$
Since the system is stable, the region of convergence includes the unit circle. Thus for $n \geq 0$
$x(n)=\operatorname{Res}\left[\frac{z^{n}}{(z-3)\left(z-\frac{1}{3}\right)}\right.$ at $\left.z=\frac{1}{3}\right]=-\frac{3}{8}\left(\frac{1}{3}\right)^{n}$

For $\mathrm{n}<0$
$x(n)=\frac{1}{2 \pi j} \int_{C} \frac{p}{(1-3 p)\left(1-\frac{1}{3} p\right)} p^{-n-1} d p$

$$
=\operatorname{Res}\left[\frac{p^{-n}}{\left(1-\frac{9}{3} p\right)\left(1-\frac{1}{3} p\right)} \text { at } p=\frac{1}{3}\right]=-\frac{3}{8}\left(\frac{1}{3}\right)^{-n}
$$

therefore,
$x(n)=-\frac{3}{8}\left[\left(\frac{1}{3}\right)^{n} u(n)+(3)^{n} u(-n-1)\right]$

Solution 7.5
(a) According to the differentiation property, the z-transform of $n x(n)$ is $-z \frac{d X(z)}{d z}$. For this problem,
$-z \frac{d X(z)}{d z}=-\frac{a z^{-1}}{\left(1-a z^{-1}\right)}$
The inverse z-transform of $-\frac{a}{\left(1-a z^{-1}\right)}$ is $-a(a)^{n} u(n)$. From the shifting property, then, the inverse z-transform of $\frac{-a z^{-1}}{\left(1-a z^{-1}\right)}$ is $-a(a)^{n-1} u(n-1)$.
Therefore
$n \mathrm{x}(\mathrm{n})=-\mathrm{a}^{\mathrm{n}} \mathrm{u}(\mathrm{n}-1)$
or
$x(n)=-\frac{a^{n}}{n} u(n-1) \quad n \neq 0$
Note that since we obtain $n x(n)$ from the differentiation property, this does not allow us to obtain $x(0)$. For this problem, however, we could obtain $x(0)$ from problem 5.7. Specifically, since $x(n)$ is causal, $x(0)=\lim _{z \rightarrow \infty} \log \left(1-a z^{-1}\right)=0$
(b) For $|\rho|<1$, the power series expansion for $\log (1-\rho)$ is $\log (1-\rho)=-\sum_{n=1}^{\infty} \frac{\rho^{n}}{n}$
thus,
$\log \left(1-a z^{-1}\right)=-\sum_{n=1}^{\infty} \frac{a^{n}}{n} z^{-n}$
thus we identify $x(n)$ as
$x(n)=-\frac{a^{n}}{n} u(n-1)$
Note this problem is strongly related to the discussion in chapter 12 of the text. You may wish to look through some of the discussion in that chapter.

Solution 7.6
$x_{1}(z)=\sum_{n=-\infty}^{+\infty} x_{1}(n) z^{-n}=\sum_{n=-\infty}^{+\infty} x(n) z^{-n M}$
Therefore $X_{1}(z)=X\left(z^{M}\right)$
For $M=2$
$x_{1}\left(e^{j \omega}\right)=x\left(e^{j 2 \omega}\right)$

Figure 57.6-1

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Digital Signal Processing

Prof. Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

