OPERATIONAL AMPLIFIERS: Theory and Practice

JAMES K. ROBERGE

OPERATIONAL AMPLIFIERS: Theory and Practice

OPERATIONAL AMPLIFIERS Theory and Practice

JAMES K. ROBERGE Massachusetts Institute of Technology

JOHN WILEY & SONS, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

To Nancy

PREFACE

The operational amplifier is responsible for a dramatic and continuing revolution in our approach to analog system design. The availability of high performance, inexpensive devices influences the entire spectrum of circuits and systems, ranging from simple, mass-produced circuits to highly sophisticated equipment designed for complex data collection or processing operations. At one end of this spectrum, modern operational amplifiers have lowered cost and improved performance; at the other end, they allow us to design and implement systems that were previously too complex for consideration.

An appreciation of the importance of this component, gained primarily through research rather than academic experience, prompted me in 1969 to start a course at M.I.T. focusing on the operational amplifier. Initially the course, structured as part of an elective sequence in active devices, concentrated on the circuit techniques needed to realize operational amplifiers and on the application of these versatile elements.

As the course evolved, it became apparent that the operational amplifier had a value beyond that of a circuit component; it was also an excellent instructional vehicle. This device supplied a reason for studying a collection of analytic and design techniques that were necessary for a thorough understanding of operational amplifiers and were also important to the general area of active-circuit design. For example, if we study direct-coupled amplifiers in detail, with proper attention given to transistor-parameter variation with temperature, to loading, and to passive-component peculiarities, we can improve our approach to the design of a large class of circuits dependent on these concepts and also better appreciate operational amplifiers. Similarly, the use of an active load to increase dramatically the voltage gain of a stage is a design technique that has widespread applicability. The

viii Preface

integrated-circuit fabrication and design methods responsible for the economical realization of modern operational amplifiers are the same as those used for other linear integrated circuits and also influence the design of many modern discrete-component circuits.

Chapters 7 to 10 reflect the dual role of the operational-amplifier circuit. The presentation is in greater detail than necessary if our only objective is to understand how an operational amplifier functions. However, the depth of the presentation encourages the transfer of this information to other circuit-design problems.

A course based on circuit-design techniques and some applications material was taught for two years. During this period, it became clear that in order to provide the background necessary for the optimum use of operational amplifiers in challenging applications, it was necessary to teach material on classical feedback concepts. These concepts explain the evolution of the topology used for modern amplifiers, suggest configurations that should be used to obtain specific closed-loop transfer functions, and indicate the way to improve the dynamics of operational-amplifier connections.

The linear-system theory course that has become an important part of most engineering educational programs, while providing valuable background, usually does not develop the necessary facility with techniques for the analysis and synthesis of feedback systems. When courses are offered in feedback, they normally use servomechanisms for their examples. Although this material can be transferred to a circuits context, the initial assimilation of these ideas is simplified when instruction is specifically tailored to the intended field of application.

Chapters 2 to 6 and Chapter 13 present the techniques necessary to model, analyze, and design electronic feedback systems. As with the circuitrelated material, the detail is greater than the minimum necessary for a background in the design of connections that use operational amplifiers. This detail is justifiable because I use the operational amplifier as a vehicle for presenting concepts valuable for the general area of electronic circuit and system design.

The material included here has been used as the basis for two rather different versions of the M.I.T. course mentioned earlier. One of these concentrates on circuits and applications, using material from Chapters 7 to 10. Some application material is included in the examples in these chapters, and further applications from Chapters 11 and 12 are included as time permits. Some of the elementary feedback concepts necessary to appreciate modern operational-amplifier topologies are also discussed in this version.

The second variation uses the feedback material in Chapters 2 to 6 and Chapter 13 as its central theme. A brief discussion of the topology used for modern operational amplifiers, such as that presented in portions of Chapters 8 and 10, is included in this option. The applications introduced as examples of feedback connections are augmented with topics selected from Chapters 11 and 12.

A laboratory has been included as an integral part of both options. In the circuits variation, students investigate specific circuits such as directcoupled amplifiers and high-gain stages, and conclude their laboratory experience by designing, building, and testing a simple operational amplifier. In the feedback version, connections of operational amplifiers are used to verify the behavior of linear and nonlinear feedback systems, to compare time-domain and frequency-domain performance indices, and to investigate stability.

We have found it helpful to have ready access to some kind of computational facilities, particularly when teaching the feedback material. The programs made available to the students reduce the manual effort required to draw the various plots and to factor polynomials when exact singularity locations are important.

Both versions of the course have been taught at least twice from notes essentially identical to the book. The student population consisted primarily of juniors and seniors, with occasional graduate students. The necessary background includes an appreciation of active-circuit concepts such as that provided in *Electronic Principles* by P. E. Gray and C. L. Searle (Wiley, New York, 1969), Chapters 1 to 14. An abbreviated circuits preparation is acceptable for the feedback version of the course. Although a detailed linear-systems background stressing formal operational calculus and related topics is not essential, familiarity with concepts such as polezero diagrams and elementary relationships between the time and the frequency domain is necessary.

Some of the more advanced applications in Chapters 11 and 12 have been included in a graduate course in analog and analog/digital instrumentation. The success with this material suggests a third possible variation of the course that stresses applications, with feedback and circuit concepts added as necessary to clarify the applications. I have not yet had the opportunity to structure an entire course in this way.

It is a pleasure to acknowledge several of the many individuals who contributed directly or indirectly to this book. High on the list are three teachers and colleagues, Dr. F. Williams Sarles, Jr., Professor Campbell L. Searle, and Professor Leonard A. Gould, who are largely responsible for my own understanding and appreciation of the presented material.

Two students, Jeffrey T. Millman and Samuel H. Maslak, devoted substantial effort to reviewing and improving the book.

x Preface

Most of the original manuscript and its many revisions were typed and illustrated by Mrs. Janet Lague and Mrs. Rosalind Wood. Miss Susan Garland carefully proofread the final copy.

James K. Roberge

Cambridge, Massachusetts February, 1975

CONTENTS

1.1	Introduction
1.2	The Closed-Loop Gain of an Operational Amplifier
1.2.1	Closed-Loop Gain Calculation
1.2.2	The Ideal Closed-Loop Gain
1.2.3	Examples
1.3	Overview
	Problems
PROP	ERTIES AND MODELING OF FEEDBACK
SYST	EMS
SYST	EMS
SYST 2.1 2.2	EMS Introduction Symbology
SYST 2.1 2.2 2.3	EMS Introduction Symbology Advantages of Feedback
SYST 2.1 2.2 2.3 2.3.1	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain
SYST 2.1 2.2 2.3 2.3.1 2.3.2	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.2 2.3.3	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary Block Diagrams
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4 2.4	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary Block Diagrams Forming the Block Diagram
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.2	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary Block Diagrams Forming the Block Diagram Block-Diagram Manipulations
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4 2.4 2.4.1 2.4.2 2.4.3	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary Block Diagrams Forming the Block Diagram Block-Diagram Manipulations The Closed-Loop Gain
SYST 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.2 2.4.3 2.5	EMS Introduction Symbology Advantages of Feedback Effect of Feedback on Changes in Open-Loop Gain Effect of Feedback on Nonlinearities Disturbances in Feedback Systems Summary Block Diagrams Forming the Block Diagram Block-Diagram Manipulations The Closed-Loop Gain Effects of Feedback on Input and Output Impedance

xi

Page

 III LINEAR SYSTEM RESPONSE 3.1 Objectives 3.2 Laplace Transforms 3.2.1 Definitions and Properties 3.2.2 Transforms of Common Functions 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	63 63 67 69 74 76 76 78 81 92
 3.1 Objectives 3.2 Laplace Transforms 3.2.1 Definitions and Properties 3.2.2 Transforms of Common Functions 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	63 67 69 74 76 76 78 81 92
 3.2 Laplace Transforms 3.2.1 Definitions and Properties 3.2.2 Transforms of Common Functions 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	67 67 69 74 76 76 78 81 92
 3.2.1 Definitions and Properties 3.2.2 Transforms of Common Functions 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	67 69 74 76 76 78 81 92
 3.2.2 Transforms of Common Functions 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	69 74 76 76 78 81 92
 3.2.3 Examples of the Use of Transforms 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	74 76 76 78 81 92
 3.3 Transient Response 3.3.1 Selection of Test Inputs 3.3.2 Approximating Transient Responses 	76 76 78 81 92
3.3.1 Selection of Test Inputs3.3.2 Approximating Transient Responses	76 78 81 92
3.3.2 Approximating Transient Responses	78 81 92
	81 92
3.4 Frequency Response	92
3.5 Relationships Between Transient Response and Frequency Response	
3.6 Error Coefficients	97
3.6.1 The Error Series	98
3.6.2 Examples	99
Problems	104
IV STABILITY	109
4.1 The Stability Problem	109
4.2 The Routh Criterion	112
4.2.1 Evaluation of Stability	112
4.2.2 Use as a Design Aid	116
4.3 Root-Locus Techniques	118
4.3.1 Forming the Diagram	119
4.3.2 Examples	126
4.3.3 Systems With Right-Half-Plane	
Loop-Transmission Singularities	130
4.3.4 Location of Closed-Loop Zeros	133
4.3.5 Root Contours	136
4.4 Stability Based on Frequency Response	139
4.4.1 The Nyquist Criterion	139
4.4.2 Interpretation of Bode Plots	145
4.4.3 Closed-Loop Performance in Terms of	
Loop-Transmission Parameters	149
Problems	158
V COMPENSATION	1/-
5.1 Objectives	165
5.2 Series Compensation	165 165

Contents

			Page	
	5.2.1	Adjusting the D-C Gain	165	
	5.2.2	Creating a Dominant Pole	168	
	5.2.3	Lead and Lag Compensation	171	
	5.2.4	Example	177	
	5.2.5	Evaluation of the Effects of Compensation	186	
	5.2.6	Related Considerations	191	
	5.3	Feedback Compensation	196	
		Problems	200	
VI	NONLINEAR SYSTEMS			
	6.1	Introduction	209	
	6.2	Linearization	209	
	6.2.1	The Approximating Function	210	
	6.2.2	Analysis of an Analog Divider	211	
	6.2.3	A Magnetic-Suspension System	214	
	6.3	Describing Functions	217	
	6.3.1	The Derivation of the Describing Function	217	
	6.3.2	Stability Analysis with the Aid of Describing Func-		
		tions	226	
	6.3.3	Examples	231	
	6.3.4	Conditional Stability	234	
	6.3.5	Nonlinear Compensation	240	
		Problems	242	
VII	DIREC	CT-COUPLED AMPLIFIERS	249	
	7.1	Introduction	249	
	7.2	Drift Referred to the Input	250	
	7.3	The Differential Amplifier	254	
	7.3.1	Topology	254	
	7.3.2	Gain	255	
	7.3.3	Common-Mode Rejection Ratio	259	
	7.3.4	Drift Attributable to Bipolar Transistors	262	
	7.3.5	Other Drift Considerations	266	
	7.4	Input Current	269	
	7.4.1	Operation at Low Current	270	
	7.4.2	Cancellation Techniques	271	
	7.4.3	Compensation for Infinite Input Resistance	273	
	7.4.4	Use of a Darlington Input	275	
	7.5	Drift Contributions from the Second Stage	279	
		_		

xiii

xiv	Contents

			Page
	7.5.1	Single-Ended Second Stage	279
	7.5.2	Differential Second Stage	281
	7.6	Conclusions	283
		Problems	283
VIII	OPERA	TIONAL-AMPLIFIER DESIGN TECHNIQUES	295
	8.1	Introduction	295
	8.2	Amplifier Topologies	296
	8.2.1	A Design with Three Voltage-Gain Stages	296
	8.2.2	Compensating Three-Stage Amplifiers	301
	8.2.3	A Two-Stage Design	305
	8.3	High-Gain Stages	309
	8.3.1	A Detailed Low-Frequency Hybrid-Pi Model	310
	8.3.2	Common-Emitter Stage with Current-Source Load	315
	8.3.3	Emitter-Follower Common-Emitter Cascade	317
	8.3.4	Current-Source-Loaded Cascode	320
	8.3.5	Related Considerations	321
	8.4	Output Amplifiers	327
		Problems	335
IX	AN IL	LUSTRATIVE DESIGN	343
	9.1	Circuit Description	343
	9.1.1	Overview	343
	9.1.2	Detailed Considerations	345
	9.2	Analysis	348
	9.2.1	Low-Frequency Gain	348
	9.2.2	Transfer Function	351
	9.2.3	A Method for Compensation	356
	9.3	Other Considerations	363
	9.3.1	Temperature Stability	363
	9.3.2	Large-Signal Performance	363
	9.3.3	Design Compromises	364
	9.4	Experimental Results	366
		Problems	373
v			
Χ	FIERS	KATED-CIRCUIT OFERATIONAL AMPLI-	381
	10.1	Introduction	381
	10.1	Fabrication	382
	10.4	1 utiliation	

~			
- ()	าทา	tei	nts

		Page
10.2.1	NPN Transistors	383
10.2.2	PNP Transistors	386
10.2.3	Other Components	388
10.3	Integrated-Circuit Design Techniques	391
10.3.1	Current Repeaters	392
10.3.2	Other Connections	394
10.4	Representative Integrated-Circuit Operational	
	Amplifiers	400
10.4.1	The LM101 and LM101A Operational Amplifiers	401
10.4.2	The μ A776 Operational Amplifier	410
10.4.3	The LM108 Operational Amplifier	415
10.4.4	The LM110 Voltage Follower	416
10.4.5	Recent Developments	420
10.5	Additions to Improve Performance	422
	Problems	426
BASIC	APPLICATIONS	433
11.1	Introduction	433
11.2	Specifications	433
11.2.1	Definitions	434
11.2.2	Parameter Measurement	437
11.3	General Precautions	442
11.3.1	Destructive Processes	442
11.3.2	Oscillation	444
11.3.3	Grounding Problems	446
11.3.4	Selection of Passive Components	447
11.4	Representative Linear Connections	449
11.4.1	Differential Amplifiers	449
11.4.2	A Double Integrator	452
11.4.3	Current Sources	452
11.4.4	Circuits which Provide a Controlled Driving-Point	4==
	Impedance	455
11.5	Nonlinear Connections	457
11.5.1	Precision Rectifiers	457
11.5.2	A reak Detector	459
11.5.3	Generation of Piecewise-Linear Transfer Character-	460
11 5 4	Isucs	400
11.5.4	Log and Antilog Circuits	402
11.5.5	Analog Multiplication	408
11.6	Applications involving Analog-Signal Switching Problems	471 476

XI

xv

			Page
XII	ADVA	NCED APPLICATIONS	485
	12.1	Sinusoidal Oscillators	485
	12.1.1	The Wien-Bridge Oscillator	485
	12.1.2	Quadrature Oscillators	486
	12.1.3	Amplitude Stabilization by Means of Limiting	487
	12.1.4	Amplitude Control by Parameter Variation	488
	12.2	Nonlinear Oscillators	496
	12.2.1	A Square- And Triangle-Wave Generator	497
	12.2.2	Duty-Cycle Modulation	500
	12.2.3	Frequency Modulation	502
	12.2.4	A Single-Amplifier Nonlinear Oscillator	502
	12.3	Analog Computation	502
	12.3.1	The Approach	506
	12.3.2	Amplitude and Time Scaling	513
	12.3.3	Ancillary Circuits	516
	12.4	Active Filters	525
	12.4.1	The Sallen and Key Circuit	525
	12.4.2	A General Synthesis Procedure	528
	12.5	Further Examples	536
	12.5.1	A Frequency-Independent Phase Shifter	536
	12.5.2	A Sine-Wave Shaper	540
	12.5.3	A Nonlinear Three-Port Network	546
		Problems	551
XIII	СОМР	ENSATION REVISITED	557
	13.1	Introduction	557
	13.2	Compensation When the Operational-Amplifier	
		Transfer Function is Fixed	558
	13.2.1	Input Compensation	558
	13.2.2	Other Methods	563
	13.3	Compensation By Changing the Amplifier	
		Transfer Function	571
	13.3.1	General Considerations	571
	13.3.2	One-Pole Compensation	575
	13.3.3	Two-Pole Compensation	586
	13.3.4	Compensation That Includes a Zero	597
	13.3.5	Slow-Rolloff Compensation	604

		Cor	itents	xvii
				Page
13.3.6	Feedforward Compensation			630
13.3.7	Compensation to Improve	Large-Signal	Perform-	
	ance			632
13.3.8	Summary			645
	Problems			648
INDEX	X			655

(1) A start of the second start of the second se

RES.6-010 Electronic Feedback Systems Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.