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A Supplementary material on the Pauli algebra 

A.1 Useful formulas 

A = a01 + �a �σÃ = a01 − �a �σA† = a0
∗1 + �a∗ �σĀ = Ã† = a∗ 

01 − �a∗ �σ· · ·	 · 

1 
Tr(A) = a0 , A = a 20 − �a 21

1 
Tr(AÃ)	 (A.1.1)

2 
| | 

2 

1 
Tr(AB̃) = a0b0 − �a �b	 (A.1.2)

2 
·


A−1 Ã ˜
= 
A

for |A| = 1 : A−1 = A	 (A.1.3)
| | 

(�a �σ) �b �σ = �a �b1 + i � �b �σ	 (A.1.4)· · · a × · 

For �a��b	 a1 
= 
a2 

= 
a3 

�a × �b = 0 (A.1.5)
b1 b2 b3 

(�a �σ)(�b �σ) − (�b �σ)(�a �σ) = [(�a �σ), (�b �σ)] = 0	 (A.1.6)· · · · · · 

For A = a01 + �a �σ, B = b01 +�b �σ	 (A.1.7)·	 · 
[A, B] = 0 iff �a��b	 (A.1.8) 

For �a ⊥ �b, �a �b� 
·� 

�a · �σ,�b · �σ ≡ (�a · �σ)(�b · �σ) + (�b · �σ)(�a · �σ) = 0 (A.1.9) 

A(�b �σ) = (�b �σ)Ã	 (A.1.10)·	 · 

φ φ φ	 φ 
U = U u, 

2 
= cos 

2
1 − i sin 

2 
n · σ = exp −i 

2 
n · σˆ	 ˆ � ˆ � (A.1.11) 

ˆ µ µ µˆ µˆH = H h, = cosh 1 + sinh h �σ = exp h �σ (A.1.12)
2 2 2 

· 
2 

· 

U unitary unimodular, H Hermitian and positive. 
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A.2 Lorentz invariance and bilateral multiplication 

For Hermitian matrices: K† = K, K̄ = K̃ and the same for R. Why bilateral multiplication? To 
eliminate nonphysical factors indicated as ����. 

� �� � 
e(µ−iφ)/2 

e−(µ−
0 
iφ)/2 k

k

1

0 

+
+ 
ik
k3

2 

k1 − ik2 (A.2.1)= 
0 k2 − k3 

µ/2(k0 + u3) e
−iφ/2 µ/2 e e� �� � ����(k1 − ik2)e

−iφ/2 

e−µ/2 µ/2(k0 − k3) e
iφ/2 (A.2.2) � �� �(k1 + ik2)e

−iφ/2 e ���� × 

� �� � 
k0 + k3 k1 − ik2 e(µ+iφ)/2 

e−(µ+

0 
iφ)/2 = (A.2.3)

k1 + ik2 k2 − k3 0 

µ/2(k0 + k3) e
iφ/2 �e−�� µ/�2(k1 − ik2)e

−iφ/2e

e−µ/2 
���
iφ/
� 
2 µ/2(k0 − k3) e

−iφ/2 (A.2.4) � �� �(k1 + ik2)e e � �� � × 

� �� �� � 
e(µ−iφ)/2 0 k0 + k3 k1 − ik2 e(µ+iφ)/2 0 

0 e−(µ−iφ)/2 k1 + ik2 k2 − k3 0 e−(µ+iφ)/2 = (A.2.5) 

eµ/2(k0 + k3) e−iφ/2(k1 − ik2) 
iφ/2(k1 + ik2) µ/2(k0 − k3) 

(A.2.6)
e e

Or, in 4 × 4 matrix form: ⎛ ⎞ ⎛ ⎞⎛ ⎞ 
k� cos φ − sin φ 0 0 k11 ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ k2
� ⎟ ⎜ sin φ cos φ 0 0 ⎟⎜ k2 ⎟ (A.2.7)⎝ k3
� ⎠ = ⎝ 0 0 cosh µ sinh µ ⎠⎝ k3 ⎠ 

k0
� 0 0 sinh µ cosh µ k0 

Circular rotation around the z-axis by φ and hyperbolic rotation along the same asix by th ehyper
bolic angle µ: Lorentz four-screw: L(φ, ẑ, µ). These transformations form an Abelian group. 

In the Pauli algebra the formal simplicity of these relations is maintained even for arbitrary axial 
directions. To be sure, obtaining explicit results from the bilateral products may become cumber
some. However, the standard vectorial results can be easily extracted. 
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A.3 Typical Examples 

Example 1 

K � = HKH, H = exp 
µ 
2 
ĥ · �σ 

�k = �k� + �k⊥ 
�k� = (�k · ĥ)ĥ (A.3.1) 

By using (6a) and (7b): 

�k �σH = H�k �σ , �k �σH = H−1�k �σ� · � · ⊥ · ⊥ · 
�k� = �k = kĥ (A.3.2) 

k0
� + �k� �σ = H2 k0 + �k �σ� · � 

� · �� � 
= cosh µ + sinh µĥ �σ k0 + �k �σ (A.3.3)· � · 

k0
� = k0 cosh µ + k sinh µ 

k� = k0 sinh µ + k cosh µ (A.3.4) 

Example 2 

φ 
K � = UKU−1 , U = exp −i 

2 
û · �σ 

�k = �k� + �k⊥ 
�k� = (�k · û)û (A.3.5) 

�k �σU−1 = U−1�k �σ , �k �σU−1 = U�k �σ� · � · ⊥ · ⊥ · 
�k� = �k (A.3.6) 

(A.3.7) 

� �2 
�k� �σ = cos 

φ 
1 − i sin 

φ
û �σ �k �σ⊥ · 2 2 
· ⊥ · 

= (cos φ1 − i sin φû · �σ) �k⊥ · �σ 
�k� = cos φ�k⊥ + sin φˆ �k (A.3.8)⊥ u × ⊥ 
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A.4 On the use of Involutions 

The existence of the three involutions ( see Equations A.1.1 above), provides a great deal of flexil
bity. However, the most efficient use of these concepts calls for some care. 

For any matrix of A2 

Ã 1 
A−1 = 

A
|A| =

2 
Tr(AÃ)	 (A.4.1)

| | 

In the case of Hermitian matrices we have two alternatives: 

k0r0 − �k �r =
1 
Tr(KR̃)	 (A.4.2)· 

2 
or 

k0r0 − �k �r =
1 
Tr(KR̄) (A.4.3)· 

2 
It will appear, however from later discussions, that the complex reflection of Equation A.4.3 is 
more appropriate to describe the transition from contravariant to covariant entities. 

A case in point is the formal representation of the mirroring of a four-vector in a plane with the 
normal along x̂1. We have 

¯K �	 = σ1Kσ1 = σ1 (k01 − k1σ1 − k2σ2 − k3σ3) σ1 

= σ1
2 (k01 − k1σ1 + k2σ2 + k3σ3) 

= k01 − k1σ1 + k2σ2 + k3σ3 (A.4.4) 

More generally the mirroring in a plane with normal x is achieve by means of the operation 

K � = â �σK̄â �σ	 (A.4.5)· · 

Again, we could have chosen K̃ instead of K̄.


However, Eq (22) generalizes to the inversion of the electromagnetic six-vector f� = E� + iB� :


E� � + iB� � �σ = E� + iB� �σ = −E� + iB� �σ	 (A.4.6)· ·	 · 

This relation takes into account the fact that E� is a polar and B� an axial vector. 

A.5 On Parameterization and Integration 

The explicit performance of the bilateral multiplication provides the connection between the pa
rameters of rotation and the elements of the 4×4 matrices. We consider here only the pure rotation 
generated by 

φ 
U = exp(−i 

2 
û · �σ)	 (A.5.1) 
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Let


l0 = cos φ/2, l1 = sin φ/2û1 (A.5.2) 
l2 = sin φ/2û3, l3 = sin φ/2û3 (A.5.3) 

u1 = cos(û x̂1), . . . , etc. (A.5.4)· 
u 21 + u 22 + u 23 = 1 (A.5.5) 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
k� l0

2 + l1
2 − l2

2 − l2 2(l1l2 − l0l3) 2(l1l3 + l0l2) k11 3 ⎝ k2
� ⎠ = ⎝ 2(l1l2 + l0l3) l0

2 − l1
2 + l2

2 − l3
2 2(l2l3 − l0l1) ⎠ = ⎝ k2 ⎠ (A.5.6) 

k3
� 2(l1l3 − l0l3) 2(l2l3 + l0l1) l0

2 − l1
2 − l2

2 + l3
2 k3 

Such expression are, of course not very practical. One usually considers infinitesimal relations 
with the parameters dφµk. Integration of the infinitesimal operations into those of the finite group 
can be achieved within the general theory of Lie groups and Lie algebras 57. 

In our approach the integration is achieved by explicit construction for the special case of the 
restricted Lorentz group. This is the first step in our program of using group theory to supplement 
or replace method of differential equations. 

57These matters are extensively treated in the mathematical literature. A monograph aiming at physicists is [Gil06] 

92





