Signal Processing on Databases

Jeremy Kepner

Lecture 1: Using Associative Arrays

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

- Schema
- Pipeline
- Observations
- Graph Construction
- Multi-Hyper Graphs
- Summary

Innut Data

ut	auth	docid	ref.docid	1		
1234	а		а			
1243	b	b				
4321		С	С			

	ut/1234	ut/1243	ut/4321
auth/a	1		
auth/b		1	
docid/b		1	
docid/c			1
ref.docid/a	1		
ref.docid/c			1

Accumulo Table: TkeyT

	auth/a	auth/b	docid/b	docid/c	ref.docid/a	ref.docid/c
ut/1234	1				1	
ut/1243		1	1			
ut/4321				1		1

Accumulo Table: Tkey

- Holds structured citation data
- Primary table for constructing graphs
- Values hold position in record (i.e. 1st, 2nd, 3rd author/reference ...)

Exploded Schema (Txt Table)

Accumulo Table: Ttxt

	ref	title	abstract
ref.docid/123 4	а		
ut/1243	b	b	b
ut/4321		С	С

- Traditional table for holding long formatted reference, title, and abstract strings
- Eliminates inconvenient long strings from key table
- Typically only used for manual verification

ut

1234

1243

4321

Input Data

			ut/1234	ut/1243	ut/4321
abstract		title/1gram/a	1,3	1	
		title/1gram/b	2		
c a		title/2gram/a b	1		
d		abstract/1gram/c	1		
		abstract/1gram/d	2		1
		abstract/2gram/c d	1		

Accumulo Table: TngramT

	title/1gram/a	title/1gram/b	title/2gram/a b	abstract/1gram/c	abstract/1gram/d	abstract/2gram/c d
ut/1234	1,3	2	1	1	2	1
ut/1243	1					
ut/4321					1	

Accumulo Table: Tngram

title

a b a ...

b ...

- Holds 1, 2, 3-grams for titles and abstract (5x larger than key table)
- Values hold word position(s) in record
- Separation allows ngram ingest to be done independently

Typical Processing Chain

- **1.** Uncompressed XML file [once]
- **2.** Read XML into binary structure and parse into triples [a few times to finalize parse code]
- **3.** Construct D4M associative arrays from triples to check data [once]
- 4. Insert triples into Accumulo [once per database]

 Used several intermediate files so that fewest steps need to be redone during development

Single Node 42M Record Times

- 1. Uncompress XML file [~1 hour]
- **2.** Read XML into binary structure and parse into triples [~2 hours]
- **3.** Construct D4M associative arrays from triples to check data [~1 day]
- **4.** Insert triples into Accumulo [key ~2 days, txt ~1 day, ngram ~10 days]

• Performance is sufficient that entire data set can be hosted on a single node

[•] Single node sustained insert rate of 10,000 – 100,000 entries/sec.

Outline

- Citation Data
- Graph Construction
 - Citation
 - Author
 - Institution
 - Keyword
 - Uncertainty
 - Pedigree
- Multi-Hyper Graphs
- Summary

Adjacency Matrix

Cited Document

• Document ID increases with time (as expected)

• Counts how many times a pair of Authors are in the same DocID

• Counts how many times a pair of DocIDs share an Author

Institution Graph

• Counts how many times a pair of Institutions are the same DocID

Keyword Graph

- Citation Data
- Graph Construction
- Multi-Hyper Graphs
 - Undirected
 - Directed
 - Multi
 - Hyper
- Summary

- Directed graphs can be represented as a sparse matrices
 - Multiply by adjacency matrix step to neighbor vertices
 - Work-efficient implementation from sparse data structures
- The real world is far more complex than directed graphs
 - Directed, multi, hypergraphs

Digraphs are Black & White

The World is Color

Artist: Ann Pibal; Painting: "XCRS"

5 Edge Colors

Artist: Ann Pibal; Painting: "XCRS"

20 Vertices

Artist: Ann Pibal; Painting: "XCRS"

1 Isolated Standard Edge

Artist: Ann Pibal; Painting: "XCRS"

12 Multi Edges

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ5bb^D]VU`"I gYX`k]h\`dYfa]gg]cb"

18 Hyper Edges

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ5bb^D]VU`"I gYX'k]h\ dYfa]gg]cb"

27 Edge Orderings

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ5bb^D]VU`"I gYX k]h\ dYfa]gg]cb"

52 Standard Multi Edges

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ'5bb'D]VU`"'I gYX'k]h\ dYfa]gg]cb"

Summary Observations

- Standard edge representation fragments hyper edges
 - Information is lost
- Digraph representation compresses multi-edges
 - Information is lost
- Matrix representation drops edge labels
 - Information is lost
- Standard graph representation drops edge order
 - / Information is lost
- Need edge representation that preserves information

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ'5bb'D]VU`"'I gYX'k]h\'dYfa]gg]cb"

Solution: Incidence Matrix

Edge Color Order V01	V02 V03 V04 V05 V06 V07 V08 V09 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20
B1 Blue 2 1	
S1 Silver 2 1	1 1
G1 Green 2 1	1 1
O1 Orange 2 1	1 1
O2 Orange 2 1	1 1
P1 Pink 2 1	1 1
B2 Blue 2	
S2 Silver 2	
G2 Green 2	
O3 Orange 2	
O4 Orange 2	
P2 Pink 2	
O5 Orange 1	1 1 1 1 1 1
P3 Pink 2	
P4 Pink 2	1 1
P5 Pink 2	1 1 1
P6 Pink 2	
P7 Pink 3	
P8 Pink 3	

Artist: Ann Pibal; Painting: "XCRS"

7ci fhYgmcZ5bb^D]VU`"I gYX`k]h\`dYfa]gg]cb"

- Example Code
 - tools/d4m_api/examples/1Intro/2EdgeArt
- Assignment
 - Select a picture
 - Label the edges and vertices
 - Create the incidence matrix E
 - Compute adjacency matrix from the incidence matrix using the formula A=E'E

MIT OpenCourseWare http://ocw.mit.edu

RES-LL.005 D4M: Signal Processing on Databases Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.