Signal Processing on Databases

Jeremy Kepner
Lecture 1: Using Associative Arrays

This work is sponsored by the Department of the Air Force under Air Force Contract \#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Citation Data
- Schema
- Pipeline
- Observations
- Graph Construction
- Multi-Hyper Graphs
- Summary

Exploded Schema (Key Table)

Accumulo Table: TkeyT

	$u t / 1234$	ut/1243	$u t / 4321$
auth/a	1		
auth/b		1	
docid/b		1	
docid/c			1
ref.docid/a	1		
ref.docid/c			1

	auth/a	auth/b	docid/b	docid/c	ref.docid/a	ref.docid/c
ut/1234	1				1	
ut/1243		1	1			
ut/4321				1		1

Accumulo Table: Tkey

- Holds structured citation data
- Primary table for constructing graphs
- Values hold position in record (i.e. $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ author/reference ...)

Exploded Schema (Txt Table)

Accumulo Table: Ttxt

	ref	title	abstract
ref.docid/123 4	a		
ut/1243	b	b	b
ut/4321		c	c

- Traditional table for holding long formatted reference, title, and abstract strings
- Eliminates inconvenient long strings from key table
- Typically only used for manual verification

Exploded Schema (Ngram Table)

Accumulo Table: TngramT

Input Data

ut	title	abstract
1234	a b a \ldots	c d \ldots
1243	b \ldots	
4321		d \ldots

	ut/1234	ut/1243	ut/4321
title/1gram/a	1,3	1	
title/1gram/b	2		
title/2gram/a b	1		
abstract/1gram/c	1		
abstract/1gram/d	2		1
abstract/2gram/c d	1		

	title/1gram/a	title/1gram/b	title/2gram/a b	abstract/1gram/c	abstract/1gram/d	abstract/2gram/c d
ut/1234	1,3	2	1	1	2	1
ut/1243	1					
ut/4321					1	

Accumulo Table: Tngram

- Holds 1, 2, 3-grams for titles and abstract (5x larger than key table)
- Values hold word position(s) in record
- Separation allows ngram ingest to be done independently

Typical Processing Chain

1. Uncompressed XML file [once]
2. Read XML into binary structure and parse into triples [a few times to finalize parse code]
3. Construct D4M associative arrays from triples to check data [once]
4. Insert triples into Accumulo [once per database]

- Used several intermediate files so that fewest steps need to be redone during development

Single Node 42M Record Times

1. Uncompress XML file [~1 hour]
2. Read XML into binary structure and parse into triples [~ 2 hours]
3. Construct D4M associative arrays from triples to check data [~1 day]
4. Insert triples into Accumulo [key ~ 2 days, $\mathbf{t x t} \sim 1$ day, ngram ~ 10 days]

- Single node sustained insert rate of 10,000-100,000 entries/sec.
- Performance is sufficient that entire data set can be hosted on a single node

Outline

- Citation Data
- Graph Construction
- Citation
- Author
- Institution
- Keyword
- Uncertainty
- Pedigree
- Multi-Hyper Graphs
- Summary

Adjacency Matrix

Cited Document

- Document ID increases with time (as expected)

Degree Distribution

- Power law (as expected)

Author Graph

Author DocID Graph

- Counts how many times a pair of DocIDs share an Author

Institution Graph

Institution

- Counts how many times a pair of Institutions are the same DocID

Institution DocID Graph

Keyword Graph

Keyword

- Counts how many times a pair of Keywords are in the same DocID

Keyword DocID Graph

DocID

- Counts how many times a pair of DocIDs share a Keyword

Outline

- Citation Data
- Graph Construction
- Multi-Hyper Graphs
- Undirected
- Directed
- Multi
- Hyper
- Summary

Directed Graph

- Directed graphs can be represented as a sparse matrices
- Multiply by adjacency matrix - step to neighbor vertices
- Work-efficient implementation from sparse data structures
- The real world is far more complex than directed graphs
- Directed, multi, hypergraphs

Digraphs are Black \& White

The World is Color

Artist: Ann Pibal; Painting: "XCRS"
Courtesy of Ann Pibal. Used with permission.

5 Edge Colors

Artist: Ann Pibal; Painting: "XCRS"
Courtesy of Ann Pibal. Used with permission.

20 Vertices

Artist: Ann Pibal; Painting: "XCRS"
Courtesy of Ann Pibal. Used with permission.

1 Isolated Standard Edge

Artist: Ann Pibal; Painting: "XCRS"
Courtesy of Ann Pibal. Used with permission.

12 Multi Edges

Artist: Ann Pibal; Painting: "XCRS"
\&RXUMAM RIL\$ QQBBLEDOTBVHGR LIK[SHUP IMMRQ]

18 Hyper Edges

Artist: Ann Pibal; Painting: "XCRS"

27 Edge Orderings

Artist: Ann Pibal; Painting: "XCRS"

52 Standard Multi Edges

Artist: Ann Pibal; Painting: "XCRS"
\&RXUAM IRI [\$QQBIEDOIB VHGZ LIK[SHUP IMRR]

Summary Observations

Artist: Ann Pibal; Painting: "XCRS"

\&RXUAM [RI [\$QQBIEDQIBVHGRIMR[SHUP IMRQ]

Solution: Incidence Matrix

Artist: Ann Pibal; Painting: "XCRS"
\&RXUMAM [RI [\$ QQ[BIEDQTBVHG[Z IMR[SHUP IMRQ]

Example Code \& Assignment

- Example Code
- tools/d4m_api/examples/1Intro/2EdgeArt
- Assignment
- Select a picture
- Label the edges and vertices
- Create the incidence matrix E
- Compute adjacency matrix from the incidence matrix using the formula $A=E^{\prime} E$

MIT OpenCourseWare
http://ocw.mit.edu

RES-LL. 005 D4M: Signal Processing on Databases

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

