Signal Processing on Databases

Jeremy Kepner

Lecture 2: Group Theory
Spreadsheets, Big Tables, and the Algebra of Associative Arrays

LINCOLN LABORATORY

Massachusetts Institute of Technology

Outline

- Introduction
- What are Spreadsheets?
- Theoretical Goals
- Associative Arrays
- Definitions
- Group Theory
- Vector Space
- Linear Algebra
- Summary

What are Spreadsheets and Big Tables?

- Spreadsheets are the most commonly used analytical structure on Earth (100M users/day?)
- Big Tables (Google, Amazon, Facebook, ...) store most of the analyzed data in the world (Exabytes?)
- Simultaneous diverse data: strings, dates, integers, reals, ...
- Simultaneous diverse uses: matrices, functions, hash tables, databases, ...
- No formal mathematical basis; Zero papers in AMA or SIAM

Goal: Signal Processing on Graphs/Strings/Spreadsheets/Tables/ ...

- Create a formal basis for working with these data structures based on an Algebra of Associative Arrays
- Better Algorithms
- Can create algorithms by applying standard mathematical tools (linear algebra and detection theory)
- Faster Implementation
- Associative array software libraries allow these algorithms to be implemented with $\sim 50 x$ less effort
- Good for managers, too
- Much simpler than Microsoft Excel; formally correct

Multi-Dimensional Associative Arrays

- Extends associative arrays to 2D and mixed data types
A('alice ','bob ') = 'cited '
or
A('alice ','bob ') $=47.0$
- Key innovation: 2D is 1-to-1 with triple store
('alice ','bob ','cited ')
or ('alice ','bob ',47.0)

Composable Associative Arrays

- Key innovation: mathematical closure
- All associative array operations return associative arrays
- Enables composable mathematical operations

$$
A+B \quad A-B \quad A \& B \quad A \mid B \quad A^{*} B
$$

- Enables composable query operations via array indexing
A('alice bob ',:) A('alice ',::) A('al* ',:)
$A($ 'alice : bob ',:) $\quad A(1: 2,:) \quad A==47.0$
- Simple to implement in a library (~2000 lines) in programming environments with: $1^{\text {st }}$ class support of 2D arrays, operator overloading, sparse linear algebra
- Complex queries with ~50x less effort than Java/SQL
- Naturally leads to high performance parallel implementation

Universal "Exploded" Schema

Triple Store Table: Ttranspose

Input Data

Time	src_ip	domain	dest_ip
2001-01-01	a		a
$2001-01-02$	b	b	
$2001-01-03$		c	c

	2001- $01-01$	2001- $01-02$	2001-03 src_ip/a
src_ip/b			
domain/b		1	
domain/c			1
dest_ip/a	1		
dest_ip/c			1

	src_ip/a	src_ip/b	domain/b	domain/c	dest_ip/a	dest_ip/c
2001-01-01	1				1	
$2001-01-02$		1	1			
$2001-01-03$				1		1

Triple Store Table: T

Key Innovations

- Handles all data into a single table representation
- Transpose pairs allows quick look up of either row or column

Outline

- Introduction
- Definitions
- Values
- Keys
- Functions
- Matrix multiply
- Group Theory
- Vector Space
- Linear Algebra
- Summary

Associative Array Definitions

- Keys and values are from the infinite strict totally ordered set \mathbb{S}
- Associative array $A(\mathbf{k}): \mathbb{S}^{d} \rightarrow \mathbb{S}, \mathbf{k}=\left(\mathrm{k}^{1}, \ldots, \mathrm{k}^{\mathrm{d}}\right)$, is a partial function from d keys (typically 2) to 1 value, where

$$
A\left(\mathbf{k}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}} \quad \text { and } \quad \varnothing \text { otherwise }
$$

- Binary operations on associative arrays $A_{3}=A_{1} \oplus A_{2}$, where $\oplus=\cup_{f()}$ or $\cap_{f()}$, have the properties
- If $A_{1}\left(\mathbf{k}_{\mathrm{i}}\right)=\mathrm{v}_{1}$ and $\mathrm{A}_{2}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{v}_{2}$, then $\mathrm{A}_{3}\left(\mathbf{k}_{\mathrm{i}}\right)$ is

$$
v_{1} \cup_{f()} v_{2}=f\left(v_{1}, v_{2}\right) \quad \text { or } \quad v_{1} \cap_{f()} v_{2}=f\left(v_{1}, v_{2}\right)
$$

- If $A_{1}\left(\mathbf{k}_{i}\right)=v$ or \varnothing and $A_{2}\left(\mathbf{k}_{\mathrm{i}}\right)=\varnothing$ or v , then $\mathrm{A}_{3}\left(\mathbf{k}_{\mathrm{i}}\right)$ is

$$
\mathrm{v} \cup_{\mathrm{f}()} \varnothing=\mathrm{v} \quad \text { or } \quad \mathrm{v} \cap_{\mathrm{f}()} \varnothing=\varnothing
$$

- High level usage dictated by these definitions
- Deeper algebraic properties set by the collision function $f()$
- Frequent switching between "algebras" (how spreadsheets are used)

Associative Array Values

- Value requirements
- Diverse types: integers, reals, strings, ...
- Sortable
- Set
- Let \mathbb{S} be an infinite strict totally ordered set
- Total order is an implementation (not theoretical) requirement
- All values (and keys) will be drawn from this set
- Allowable operations for $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathbb{S}$

$$
\begin{array}{lll}
\mathrm{v}_{1}<\mathrm{v}_{2} & \mathrm{v}_{1}=\mathrm{v}_{2} & \mathrm{v}_{1}>\mathrm{v}_{2}
\end{array}
$$

- Special symbols: $\varnothing,-\infty,+\infty$

$$
\begin{array}{ll}
v \leq+\infty & \text { is always true } \quad(+\infty \in \mathbb{S}) \\
v \geq-\infty & \text { is always true } \quad(-\infty \in \mathbb{S}) \\
\varnothing & \text { is the empty set }(\varnothing \subset \mathbb{S})
\end{array}
$$

- Above properties are consistent with strict totally ordered sets

Collision Function f()

- Collision function $f\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ can have
- two contexts ($\cup \cap$)
- three conditions (<=>)
$-d+5$ possible outcomes ($\mathbf{k} \mathrm{v}_{1} \mathrm{v}_{2} \varnothing-\infty+\infty$) [or sets of these]
- Combinations result in an enormous number of functions ($\sim 10^{30}$) and an even greater number of associative array algebras (function pairs)
- Impressive level of functionality given minimal assumptions
- Focus on "nice" collision functions
- Keys are not used inside the function; results are single valued
- No tests on special symbols

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \\
& \mathrm{v}_{1}<\mathrm{v}_{2}: \mathrm{v}_{1} \mathrm{v}_{2} \varnothing-\infty+\infty \\
& v_{1}=v_{2}: v \quad \varnothing-\infty+\infty \\
& \mathrm{v}_{1}>\mathrm{v}_{2}: \mathrm{v}_{1} \mathrm{v}_{2} \varnothing-\infty+\infty
\end{aligned}
$$

- Above properties are consistent with strict totally ordered sets
- Note: \varnothing is handled by $\cup \cap$; not passed into $f()$

What About Concatenation?

- Concatenation of values (or keys) can be represented by using \cup or \cap as collision function
- Requires generalizing values to sets $\mathrm{v}_{1}, \mathrm{v}_{2} \subset \mathfrak{S}$
- Allowable operations for $\mathrm{v}_{1}, \mathrm{v}_{2} \subset \mathfrak{S}$

$$
\mathrm{v}_{1} \cup \mathrm{v}_{2} \quad \mathrm{v}_{1} \cap \mathrm{v}_{2}
$$

- Special symbols: Ø, S

```
v Ø =\varnothing annihilator (but never reached, so identify)
v\cupS =S annihilator
v \cap S = v identity
v\cup\varnothing=v identity
```

- Possible operators: $\cup_{\cup}, \cap_{u}, \cup_{n}, \cap_{n}$
- Concatenating collision functions are very useful
- Can be handled by extending values to be sets

Matrix Multiply Framework

- Graphs can be represented as a sparse matrices
- Multiply by adjacency matrix \rightarrow step to neighbor vertices
- Work-efficient implementation from sparse data structures
- Graph algorithms reduce to products on semi-rings: $A_{3}=A_{1} \oplus \cdot \otimes A_{2}$
- \otimes : associative, distributes over \oplus
- \oplus : associative, commutative
- Examples: +.* min.+ or.and

Theory Questions

- Associative arrays can be constructed from a few definitions
- Similar to linear algebra, but applicable to a wider range of data
- Key questions
- Which linear algebra properties do apply to associative arrays (intuitive)
- Which linear algebra properties do not apply to associative arrays (watch out)
- Which associative array properties do not apply to linear algebra (new)

Outline

- Introduction
- Definitions
- Group Theory
- Binary operators
- Commutative monoids
- Semirings
- Feld
- Vector Space
- Linear Algebra
- Summary

Operators Roadmap

- Begin with a few definitions
- Expand into many operators; reduce to well behaved
- Expand into many operator pairs; reduce to well behaved

Including Concatenation

- Including concatenation operators expands semirings
- Doesn't expand vector semi-space

Associative and Commutative Operators

ID	Operator \oplus	$\mathrm{v}_{1}<\mathrm{v}_{2}$	$\mathrm{v}_{1}=\mathrm{v}_{2}$	$\mathrm{v}_{1}>\mathrm{v}_{2}$
1	$\cup_{\text {left }}$	v_{1}	v	v_{1}
2	$\cap_{\text {left }}$	v_{1}	v	v_{1}
3	$\cup_{\text {max }}$	v_{2}	v	v_{1}
4	$\cap_{\text {max }}$	v_{2}	v	v_{1}
41	$\cup_{\min }$	v_{1}	v	v_{2}
42	$\cap_{\text {min }}$	v_{1}	v	v_{2}
43	$\cup_{\text {right }}$	v_{2}	v	v_{2}
44	$\cap_{\text {right }}$	v_{2}	v	v_{2}
86	\cap_{δ}	\varnothing	v	\varnothing
96	\cap_{\varnothing}	\varnothing	\varnothing	\varnothing
127	$\cup_{-\infty, \delta}$	$-\infty$	v	$-\infty$
128	$\cap_{-\infty, \delta}$	$-\infty$	v	$-\infty$
147	$\cup_{-\infty}$	$-\infty$	$-\infty$	$-\infty$
148	$\cap_{-\infty}$	$-\infty$	$-\infty$	$-\infty$
169	$\cup_{+\infty, \delta}$	$+\infty$	v	$+\infty$
170	$\cap_{+\infty, \delta}$	$+\infty$	v	$+\infty$
199	$\cup_{+\infty}$	$+\infty$	$+\infty$	$+\infty$
200	$\cap_{+\infty}$	$+\infty$	$+\infty$	$+\infty$

- Associative

$$
\left(\mathrm{v}_{1} \oplus \mathrm{v}_{2}\right) \oplus \mathrm{v}_{3}=\mathrm{v}_{1} \oplus\left(\mathrm{v}_{2} \oplus \mathrm{v}_{3}\right)
$$

- 18 associative operators
- Semigroups
- Groups w/o inverses
- Commutative

$$
\mathrm{v}_{1} \oplus \mathrm{v}_{2}=\mathrm{v}_{2} \oplus \mathrm{v}_{1}
$$

- 14 associative \& commutative operators
- Removes left and right
- Abelian Semigroups
- Abelian Groups w/o inverses

Distributive Operator Pairs

- $14 \times 14=196$ Pairs of Abelian Semigroup operators
- Distributive

$$
v_{1} \otimes\left(v_{2} \oplus v_{3}\right)=\left(v_{1} \otimes v_{2}\right) \oplus\left(v_{1} \otimes v_{3}\right)
$$

- 74 distributive operator pairs
- Semirings
- Rings without inverses and without identity elements
- 1/3 of possible operator pairs are semirings

Distributive Operator Pairs with Annihilators (0) and Identities (1)

- \oplus identity:
- \otimes identity:
- \otimes annihilator:

$$
\begin{array}{ll}
v_{1} \oplus 0=v_{1} & 0=\varnothing,-\infty,+\infty \\
v_{1} \otimes 1=v_{1} & 1=\varnothing,-\infty,+\infty \\
v_{1} \otimes 0=0 & 0=\varnothing,-\infty,+\infty
\end{array}
$$

- 12 Semirings with appropriate 01 set (4 with two)
- 16 total over six operators: $\cup_{\max }, \cap_{\max }, \cup_{\min }, \cap_{\min }, \cup_{-\infty}, \cup_{+\infty}$
- Felds? (Fields w/o inverses)
- $\oplus=\cup_{f()}$ in 10/16 (\cup feels more like plus)
- $\otimes=\cap_{f()}$ in 10/16 (\cap feels more like multiply)
- $\oplus=\cup_{\mathrm{f}()}$ and $\otimes=\cap_{\mathrm{f}()}$ in $8 / 16$
- $0=\varnothing$ in $6 / 8(\varnothing$ feels more like zero, $0>1$ might be a problem)
- $1 / 5$ of semirings are Felds (Fields w/o inverses)

Operator Pairs

Concatenate Operators

ID	Operator \oplus	$f\left(v_{1}, v_{2}\right)$
201	u_{u}	$v_{1} \cup v_{2}$
202	\cap_{\cup}	$v_{1} \cup v_{2}$
203	u_{\cap}	$v_{1} \cap v_{2}$
204	\cap_{n}	$v_{1} \cap v_{2}$

- Recall v_{1} and v_{2} are sets
- All operators are associative and commutative
- 4 Abelian Semigroups

\otimes

- All operator pairs distribute
- 16 Semirings

Outline

- Introduction
- Definitions
- Group Theory
- Vector Space
- Vector Semispace
- Uniqueness
- Linear Algebra
- Summary

Vector Space over a Feld

- Associative Array Vector \oplus
- All associative arrays are conformant (unlike matrices)
- Associative Array Scalar \otimes
- Scalar is a value applied directly to values; similar to constant function; or a function that takes on keys of non-scalar argument
- Vector Space \oplus requirements
- Commutes [Yes]; Associative [Yes]; 0 Identity element [Yes]
- Inverse [No]
- Vector Space scalar \otimes requirements
- Commutes [Yes]; Associative [Yes]; Distributes over addition [Yes]; 1 Identity element [Yes]
- All associative array operator pairs that yield Felds also result in Vector Spaces wo/inverses (Vector Semispace?)

Vector Semispace Properties

- Scalar \oplus identity annihilates under $\otimes[$ Yes]
- Subspace [Yes]
- Any linear combination of vectors taken from the subspace is in the subspace and obeys the properties of a vector space
- Theorem: Intersection of any subspaces is a subspace?
- Span [Yes+]
- Given a set of vectors A_{j}, their span is all linear combinations of those vectors (includes vectors of different lengths)

$$
\oplus_{\mathrm{j}}\left(\mathrm{a}_{\mathrm{j}} \otimes \mathrm{~A}_{\mathrm{j}}\right)
$$

- Span = Subspace [Yes?]
- Given an arbitrary set of vectors, their span is a vector space?
- Linear dependence [No]
- There is a non-trivial linear combination of vectors equal to the \oplus identity; can't do this without additive inverse
- Need to redefine linear independence or all vectors are linearly independent; use minimum vectors in a subspace definition?
- Likewise need to redefine basis as it depends upon linear dependence
- Key question: under what conditions does the result of a linear combination of associative arrays uniquely determine the coefficients

Unique Coefficient Conditions

- Consider a linear combinations of two associative array vectors

$$
A_{3}=\left(a_{1} \otimes A_{1}\right) \oplus\left(a_{2} \otimes A_{2}\right)
$$

- Let $\oplus=\cup_{\text {min }}, \otimes=\cap_{\text {max }}, 0=\varnothing$, and $1=-\infty$
- When are a_{1} and a_{2} uniquely determined by $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3} ?

Canonical Vectors	Single valued	Multi-valued
$\begin{aligned} & \mathrm{A}_{1}\left(\mathrm{k}_{1}\right)=-\infty \\ & \mathrm{A}_{2}\left(\mathrm{k}_{2}\right)=-\infty \end{aligned}$		$\begin{aligned} & A_{1}\left(k_{1} k_{2}\right)=\left(v_{1} v_{2}\right) \\ & A_{2}=A_{1} \\ & v_{1}<v_{2} \end{aligned}$
$\begin{aligned} & \mathrm{A}_{1}\left(\mathrm{k}_{1}\right)=+\infty \\ & \mathrm{A}_{2}\left(\mathrm{~K}_{2}\right)=+\infty \end{aligned}$	$\begin{aligned} & A_{1}\left(k_{1} k_{2}\right)=(v v) \\ & A_{2}=A_{1} \end{aligned}$	$\begin{aligned} & A_{1}\left(k_{1} k_{2}\right)=\left(v_{1} v_{2}\right) \\ & A_{2}\left(k_{1} k_{2}\right)=\left(v_{2} v_{1}\right) \\ & v_{1}<v_{2} \end{aligned}$

- Consider specific cases to show existence of uniqueness

Canonical Vectors

\square a_{1}, a_{2} unique \square a_{1} unique
$\mathbb{N} a_{2}$ unique
$\square \mathrm{a}_{1}, \mathrm{a}_{2}$ not unique

Single Valued Vectors

\square
a_{1}, a_{2} unique
Z a_{1} unique
a_{2} unique
$\square a_{1}, a_{2}$ not unique

Multi-Valued Vectors

Abstract

$A_{1}\left(k_{1} k_{2}\right)=\left(v_{1} v_{2}\right), A_{1}\left(k_{1} k_{2}\right)=\left(v_{2} v_{1}\right), v_{1}<v_{2} \times{ }_{Q}$ - Multi-valued vectors exist that partially cover or omit entire space

\square
a_{1}, a_{2} unique
Ma a_{1} unique
$\mathbb{N} a_{2}$ unique
$\square \mathrm{a}_{1}, \mathrm{a}_{2}$ not unique

Outline

- Introduction
- Definitions
- Group Theory
- Vector Space
- Linear Algebra
- Transpose
- Special Matrices
- Matrix Multiply
- Identity
- Inverses
- Eigenvectors
- Summary

Matrix Transpose

- Swap keys (rows and columns)

$$
A(r, c)^{\top}=A(c, r)
$$

- No change with even number of transposes
- Transpose distributes across \oplus and scalar \otimes

$$
\left(\left(a_{1} \otimes A_{1}\right) \oplus\left(a_{2} \otimes A_{1}\right)\right)^{\top}=\left(a_{1} \otimes A_{1}^{\top}\right) \oplus\left(a_{2} \otimes A_{1}^{\top}\right)
$$

- Similar to linear algebra

Special Matrices

- Submatrices [Yes]
- Zero matrix [Yes?] (empty set)
- Square matrix [Yes]
- Diagonal matrix [Yes]
- Upper/lower triangular [Yes]
- Skew symmetric [No] (no \oplus inverse)
- Hermitian [No] (no \oplus inverse)
- Elementary row/column operations [Yes?]
- Swap both keys or values? No \otimes inverse.
- If both key and value swap, then equivalent to matrix multiply
- Row/column equivalence [Yes?]
- If limit to swaps
- Similar and different from linear algebra
- Possible to construct these forms, but may not be applicable to associative arrays that have fixed keys (i.e., functions over a keys)

Matrix Multiply

- Matrix multiply

$$
\mathrm{A}_{3}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{1} \oplus \cdot \otimes \mathrm{~A}_{2}
$$

- Always conformant (can multiply any sizes)
- Inner product formulation (computation)

$$
A_{3}\left(r_{i}, c_{j}\right)=\oplus_{k}\left(A_{1}\left(r_{i}, k\right) \otimes A_{2}\left(k, c_{j}\right)\right)
$$

- Outer product formulation (theory)

$$
\begin{gathered}
A_{k}\left(r_{i}, C_{j}\right)=A_{1}\left(r_{i}, k\right) \otimes A_{2}\left(k, c_{j}\right) \\
A_{3}=\oplus_{k} A_{k}
\end{gathered}
$$

- Different from linear algebra
- Associative arrays have no conformance requirements

Matrix Multiply Examples

- 1x2 Row matrix:
- 2x1 Column matrix:
- Example 1: 1x1 Matrix:
- Example 2: 2×2 Matrix $(r \neq c): \quad A_{3}\left(k_{1} k_{2}, k_{2} k_{3}\right)=A_{2} A_{1}=$ [See Table]
- Example 3: $2 x 2$ Matrix $(r=c): A_{3}\left(k_{1} k_{2}, k_{2} k_{3}\right)=A_{2} A_{1}=f\left(v_{1}, v_{2}\right)$
- Value of A_{3} depends upon specifics of \oplus and \otimes

| Example 1 | $\otimes=\cup_{f()}$ | $\otimes=\cap_{f()}$ |
| :--- | :--- | :--- | :--- |
| $\oplus=\cup_{g()}$ | $g\left(g\left(v_{1}, f\left(v_{1}, v_{2}\right), v_{2}\right.\right.$ | $f\left(v_{1}, v_{2}\right)$ |
| | $\left.)^{(}\right)$ | |
| $=\cap_{g()}$ | $g\left(g\left(v_{1}, f\left(v_{1}, v_{2}\right), v_{2}\right.\right.$ | \varnothing |
| | $)$ | |

Example 2	$\otimes=\cup_{\mathrm{f}()}$	$\otimes=\cap_{\mathrm{f}()}$
$\oplus=\cup_{\mathrm{g}()}$	$\mathrm{g}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	\varnothing
$\oplus=\cap_{\mathrm{g}()}$	$\mathrm{g}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$	\varnothing

- Wide range of behaviors possible given specific operator choices

Identity

- Left Identity:
- When does?

$$
\mathrm{I}_{\text {left }}=\operatorname{diag}(\operatorname{Row}(\mathrm{A}))=1
$$

$$
I_{\text {left }} A=A
$$

- Right Identity:

$$
\begin{gathered}
I_{\text {right }}=\operatorname{diag}(\operatorname{Col}(A))=1 \\
A I_{\text {right }}=A
\end{gathered}
$$

- Generally possible when

$$
\oplus=\cup_{\mathrm{g}()} \quad \otimes=\cap_{\mathrm{f}()}
$$

- In some circumstances

$$
\mathrm{I}=\mathrm{I}_{\text {left }} \oplus \mathrm{I}_{\text {right }} \quad \text { and } \quad \mathrm{AI}=\mathrm{A}=\mathrm{I}
$$

- Similar to linear algebra for a limited set of \oplus and \otimes

Inverses

- Left Inverse: \quad A A $^{-1}=I_{\text {left }}$
- Right Inverse: $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}_{\text {right }}$
- Is it possible to construct matrix inverses with no \oplus inverse and no \otimes inverse
- Generally, no. Exception
- A is a column/row vector
$-\oplus=\cup_{g()}, \otimes=\cap_{f()}$
$-I_{\text {right/left }}$ is 1×1 equal to "local" 1 (i.e., 1 wrt to A)
- Different from linear algebra
- Inverses generally do not appear in associative arrays

Eigenvectors (simple case)

- Let $\oplus=\cup_{g}, \otimes=\cap_{f}$
- Let A, A_{e}, A_{λ} be $N x N$ and have 1 element per row and column

$$
A\left(r_{i}, r_{i}\right)=v_{i} \quad A_{e}\left(r_{i}, c_{i}\right)=e_{i} \quad A_{\lambda}\left(c_{i}, c_{i}\right)=v_{i}
$$

- Eigenvector equation

$$
\mathrm{A} \mathrm{~A}_{e}=\mathrm{A}_{\mathrm{e}} \mathrm{~A}_{\lambda} \quad=\mathrm{A}_{\mathrm{e} \lambda}
$$

- where: $A_{e \lambda}\left(r_{i}, c_{i}\right)=f\left(v_{i}, e_{i}\right)$
- Eigenvector equation satisfied in a simple case
- Row and column keys must match

Pseudoinverse (simple case)

- Let $\oplus=\cup_{g}, \otimes=\cap_{f}$
- Let A, A^{+}be $N x N$ (or $N_{r} x N_{c}$?) and have 1 element per row and column

$$
\mathrm{A}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}} \quad \mathrm{~A}^{+}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}}^{+}
$$

- Pseudoinverse requires

$$
\begin{aligned}
& A=A A^{+} A \\
& A=A^{+} A A^{+} \\
& \left(A A^{+}\right)^{\top}=A A^{+} \\
& \left(A A^{+}\right)^{\top}=A A^{+}
\end{aligned}
$$

- where: $f\left(v_{i}, v_{i}+\right)=v_{i}$
- Pseudoinverse equation satisfied in a simple case
- Row and column keys can be different

Future Work: Got Theorems?

- Spanning theorems: when is a span a vector space?
- Linear dependence: adding a vector doesn't change span?
- Identity Array: when do left/right identity exist?
- Inverse: why doesn't it exist?
- Determinant: existance?
- Pseudoinverse: existence? How to compute?
- Linear transforms: existance?
- Norms or inner product space
- Compressive sensing requirements
- Eigenvectors
- Convolution (with next operator)
- Complementary matrices
- For which $\oplus, \otimes, 0 / 1$ do these apply

Summary

- Algebra of Associative Arrays provides the mathematics for representing and operating on Spreadsheets and Big Tables
- Small number of assumptions yields a rich mathematical environment
- Much of linear algebra is available without \oplus inverse and \otimes inverse

Example Code \& Assignment

- Example Code
- d4m_api/examples/1Intro/3GroupTheory
- Assignment 2
- Define, in words, a list of operations that make "sense" for your associative arrays in Assignment 1
- Explain your reasoning

Relational Model High Level Comparison

	Relational Database	Associative Arrays
Fill	Dense	Sparse
Columns	Static	Dynamic
Data	Typed	Untyped
\#Rows	Unlimited	Unlimited
\#Columns	Small	Unlimited
Dimensions	2 different	N same
Main Operation	Join	Linear Algebra

- Relational algebra (Codd 1970) is the de facto theory of databases
- The design goal of relational algebra and associative arrays algebra are fundamentally different
- Result in a fundamental differences in the theory

MIT OpenCourseWare
http://ocw.mit.edu

RES-LL. 005 D4M: Signal Processing on Databases

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

