Signal Processing on Databases

Jeremy Kepner

Lecture 5: Perfect Power Law Graphs: Generation, Sampling, Construction, and Fitting

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

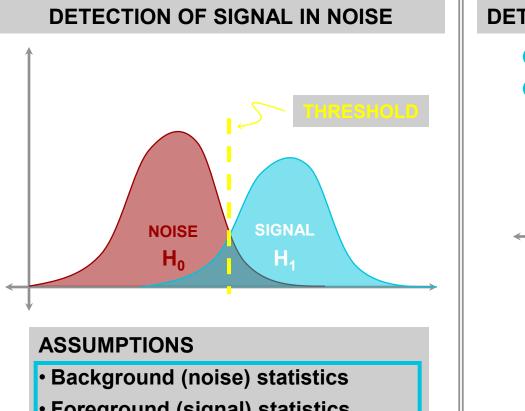
Introduction

- Sampling
- Sub-sampling
- Joint Distribution
- Reuter's Data
- Summary

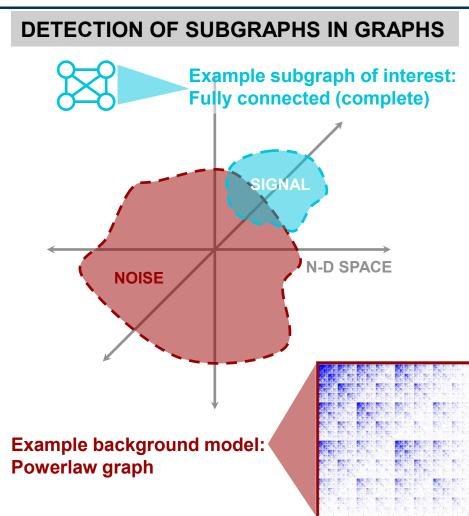
- Detection Theory
- Power Law Definition
- Degree Construction
- Edge Construction
- Fitting: α, N, M
- Example

- Develop a background model for graphs based on "perfect" power law
- Examine effects of sampling such a power law
- Develop techniques for comparing real data with a power law model
- Use power law model to measure deviations from background in real data

Detection Theory

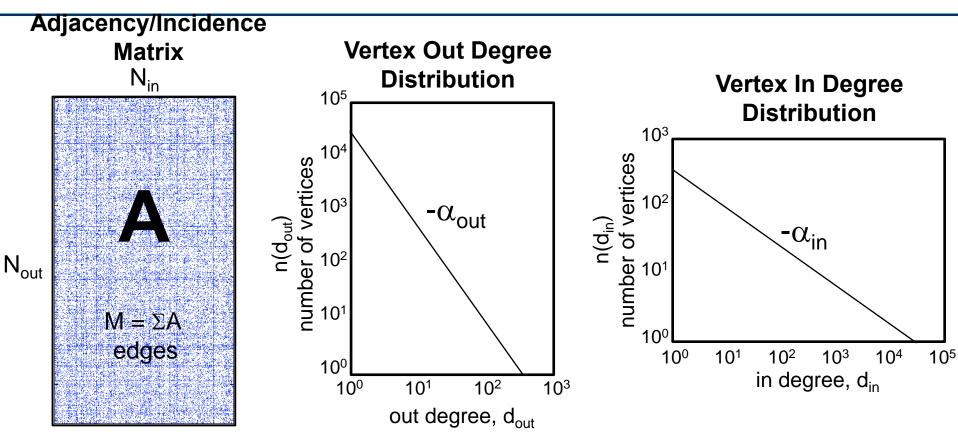


- Foreground (signal) statistics
- Foreground/background separation
- Model ≈ reality



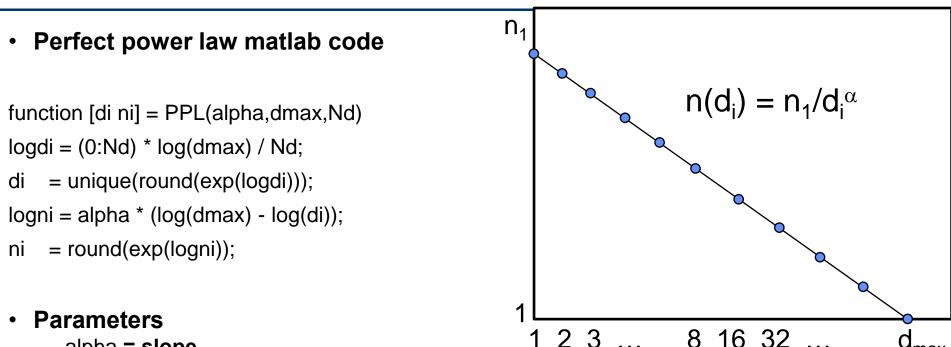
Can we construct a background model based on power law degree distribution?

"Perfect" Power Law Matrix Definition



- Graph represented as a rectangular sparse matrix
 - Can be undirected, multi-edged, self-loops, disconnected, hyper edges, ...
- Out/in degree distributions are *independent* first order statistics
 - **Only constraint:** $\Sigma n(d_{out}) d_{out} = \Sigma n(d_{in}) d_{in} = M$

Power Law Distribution Construction



integer

- alpha = slope
- dmax = largest degree vertex
- Nd = number of bins (before unique)
 - Simple algorithm naturally generates perfect power law
 - Smooth transition from integer to logarithmic bins
 - "Poor man's" slope estimator: α = log(n₁)/log(d_{max})

logarithmic

function v = PowerLawEdges(di,ni);

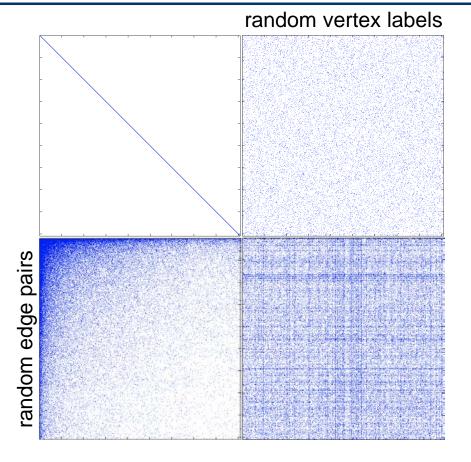
- A1 = sparse(1:numel(di),ni,di);
- A2 = flipIr(cumsum(flipIr(A1),2));
- [tmp tmp d] = find(A2);

```
A3 = sparse(1:numel(d),d,1);
```

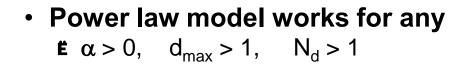
```
A4 = fliplr(cumsum(fliplr(A3),2));
```

[v tmp tmp] = find(A4);

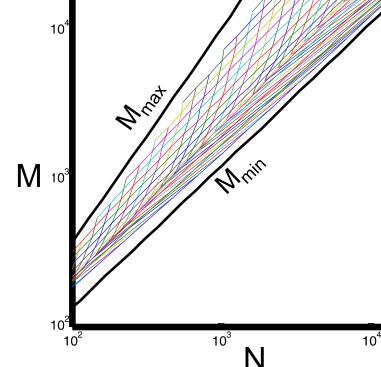
- Degree distribution independent of
 - Vertex labels
 - Edge pairing
 - Edge order



- Algorithm generates list of vertices corresponding to any distribution
- All other aspects of graph can be set based on desired properties



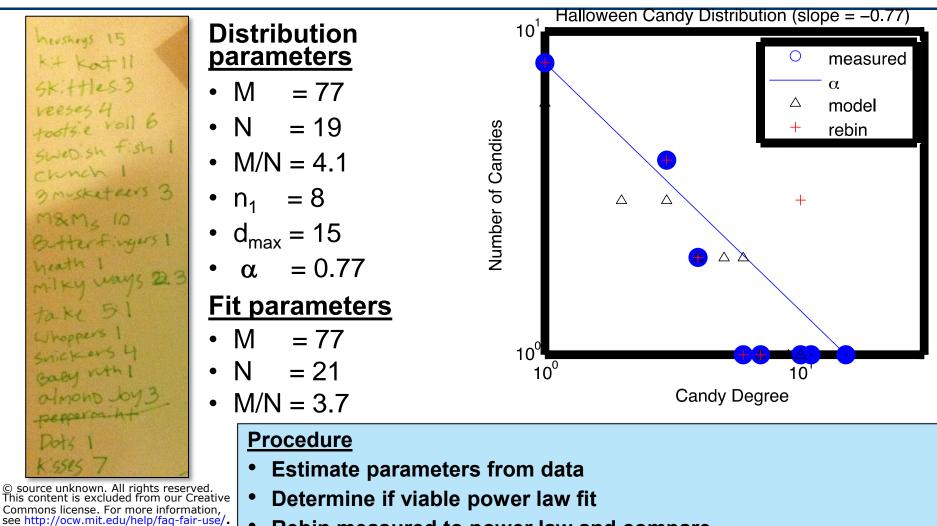
- Desire distribution that fits $\mathbf{E} \alpha$, N, M
- Can invert formulas – $N = \Sigma_i n(d_i)$ – $M = \Sigma_i n(d_i) d_i$



Allowed N and M for $\alpha = 1.3$

- Highly non-linear; requires a combination of
 - Exhaustive search, simulated annealing, and Broyden's algorithm
 - Given α , N, M can solve for N_d and d_{max}
 - Not all combinations of α , N, M are consistent with power law

Example: Halloween Candy



Rebin measured to power law and compare

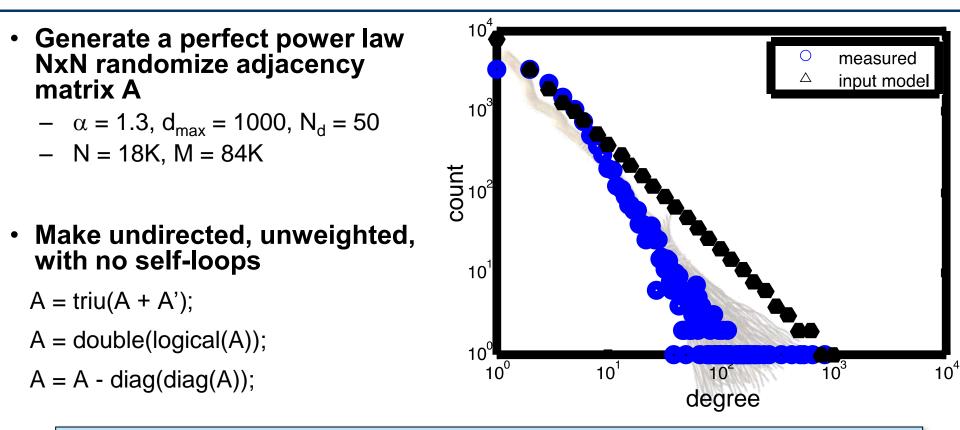
Introduction

Sampling

- Sub-sampling
- Joint Distribution
- Reuter's Data
- Summary

- Graph construction
- Graphs from E' * E
- Edge ordering and densification

Graph Construction Effects

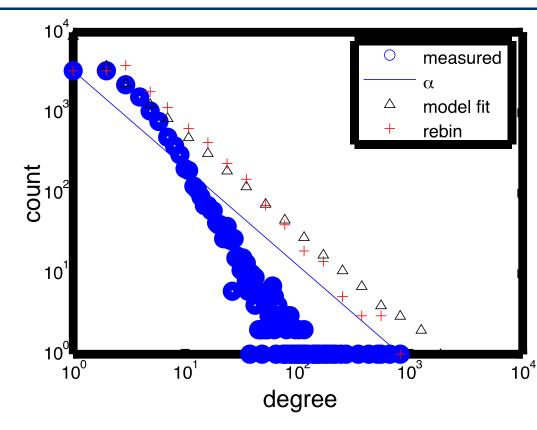


- Graph theory best for undirected, unweighted graphs with no self-loops
- Often "clean up" real data to apply graph theory results
- Process mimics "bent broom" distribution seen in real data sets

Power Law Recovery

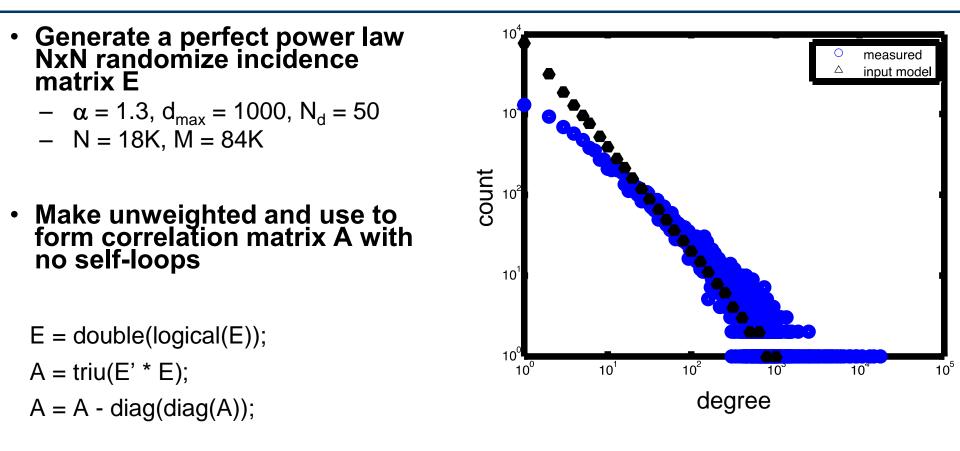
Procedure

- Compute α, N, M from measured
- Fit perfect power law to these parameters
- Rebin measured data using perfect power law degree bins



 Perfect power law fit to "cleaned up" graph can recover much of the shape of the original distribution

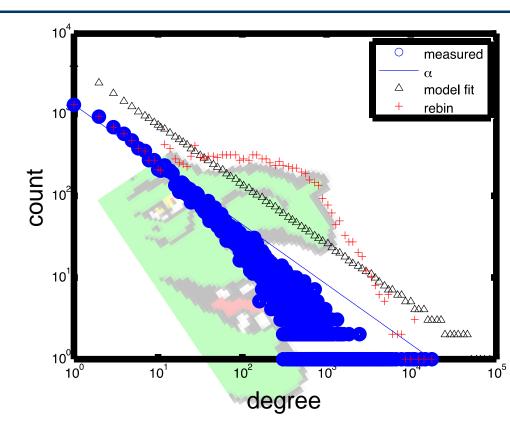
Correlation Construction Effects



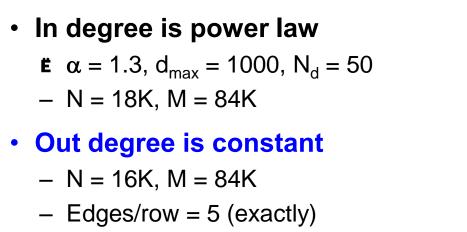
• Correlation graph construction from incidence matrix results in a "bent broom" distribution that strongly resembles a power law

Procedure

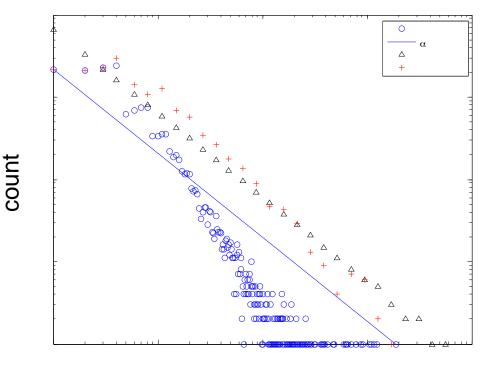
- Compute α, N, M from measured
- Fit perfect power law to these parameters
- Rebin measured data using perfect power law degree bins



- Perfect power law fit to correlation shows non-power law shape
- Reveals "witches nose" distribution



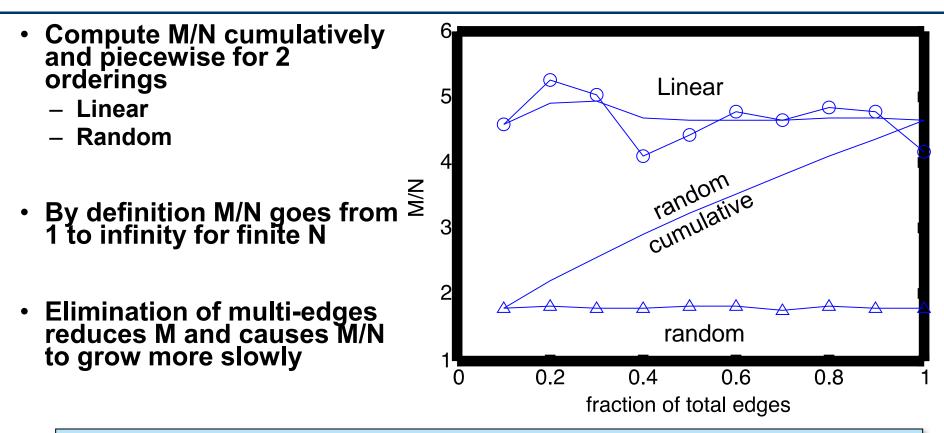
 Make unweighted and use to form correlation matrix A with no self-loops



degree

Uniform distribution on correlated dimension preserves power law shape

Edge Ordering: Densification



- "Densification" is the observation that M/N increases with N
- Densification is a natural byproduct of randomly drawing edges from a power law distribution
- Linear ordering has constant M/N

Edge Ordering: Power Law Exponent (α)



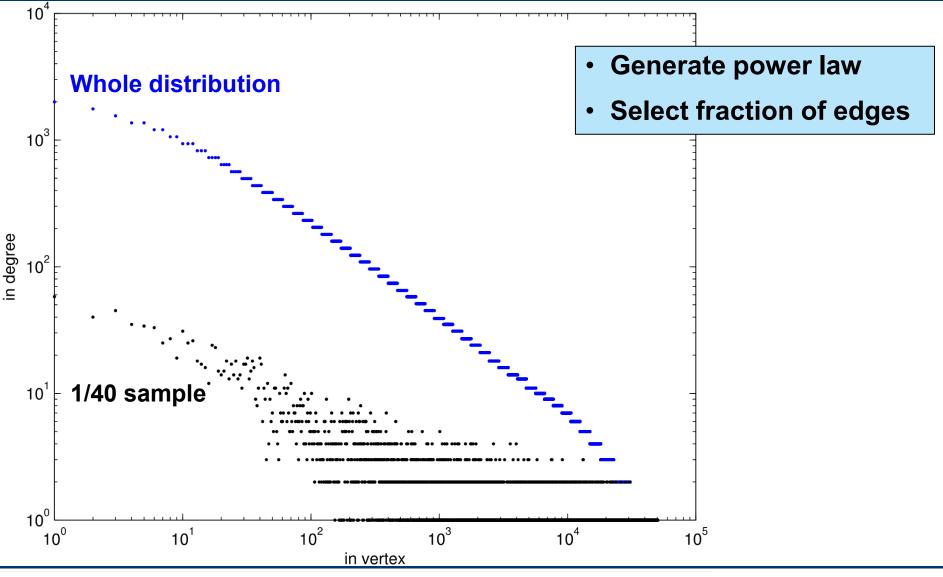
- Power law exponent is fundamental to distribution
- Strongly dependent on edge ordering and sample size

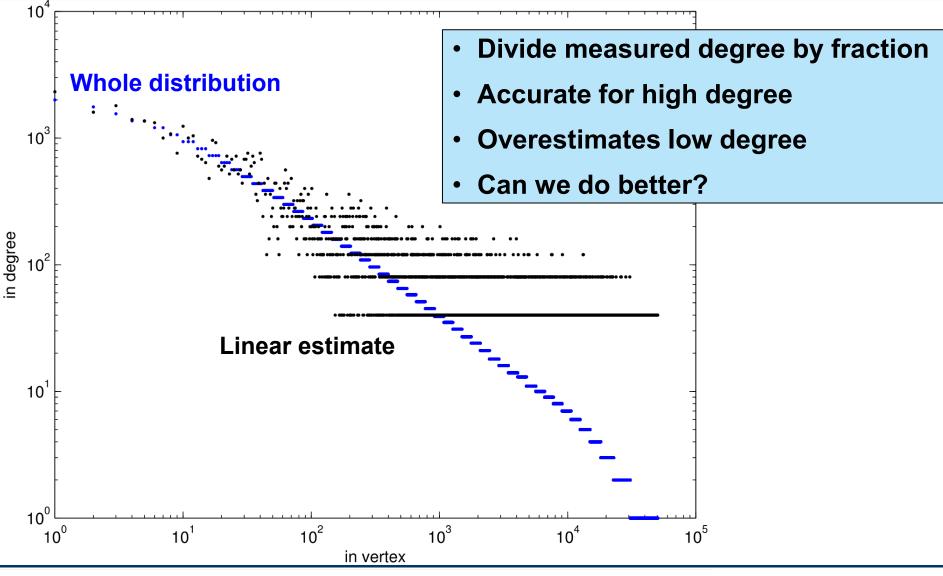
Outline

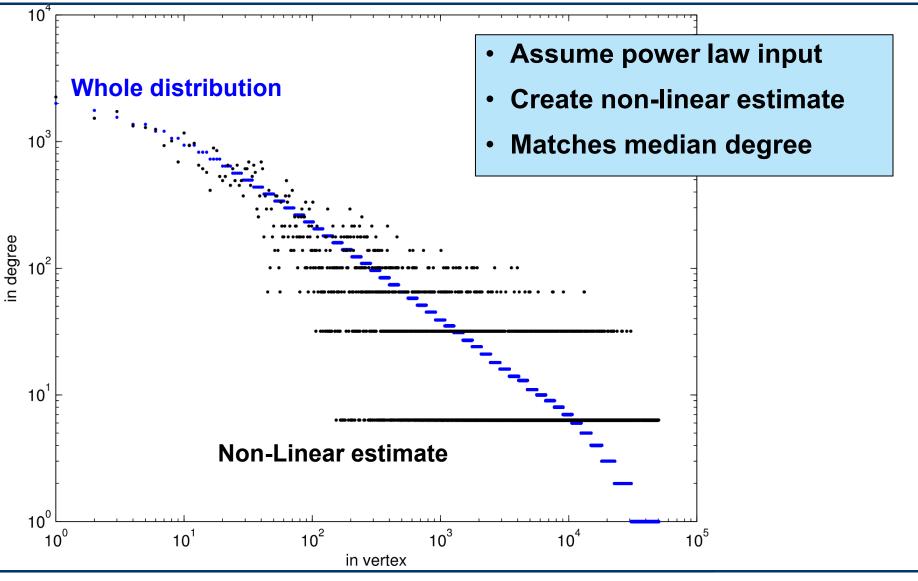
- Introduction
- Sampling
- Sub-sampling
- Joint Distribution
- Reuter's Data
- Summary

- Anomaly detection requires good estimates of background
- Traversing entire data sets to compute background counts is increasingly prohibitive
 - Can be done at ingest, but often is not
- Can background be accurately estimated from a sub-sample of the entire data set?

Sampling a Power Law







- f = fraction of total edges sampled
- $\underline{n}_1 = #$ of vertices of degree 1
- <u>d</u>_{max} = maximum degree
- Allowed slope: $\ln(\underline{n}_1)/\ln(\underline{d}_{max}/f) < \alpha < \ln(\underline{n}_1)/\ln(\underline{d}_{max})$
- Cumulative distribution

 $\mathsf{P}(\alpha,d) = (\mathsf{f}^{1\text{-}\alpha} \underline{d}_{\max}^{\alpha} / \underline{n}_1) \Sigma_{\mathsf{i} < \mathsf{d}} \, \mathsf{i}^{1\text{-}\alpha} \, \mathsf{e}^{\text{-}\mathsf{f}\mathsf{i}}$

- Find α^* such that $P(\alpha^*, \infty) = 1$
- Find $d_{50\%}$ such that $P(\alpha^*, d_{50\%}) = \frac{1}{2}$
- Compute $K = 1/(1 + \ln(d_{50\%})/\ln(f))$
- Non-linear estimate of true degree of vertex v from sample $\underline{d}(v)$ $d(v) = \underline{d}(v) / f^{1-1/(K \underline{d}(v))}$

Outline

- Introduction
- Sampling
- Sub-sampling
- Joint Distribution

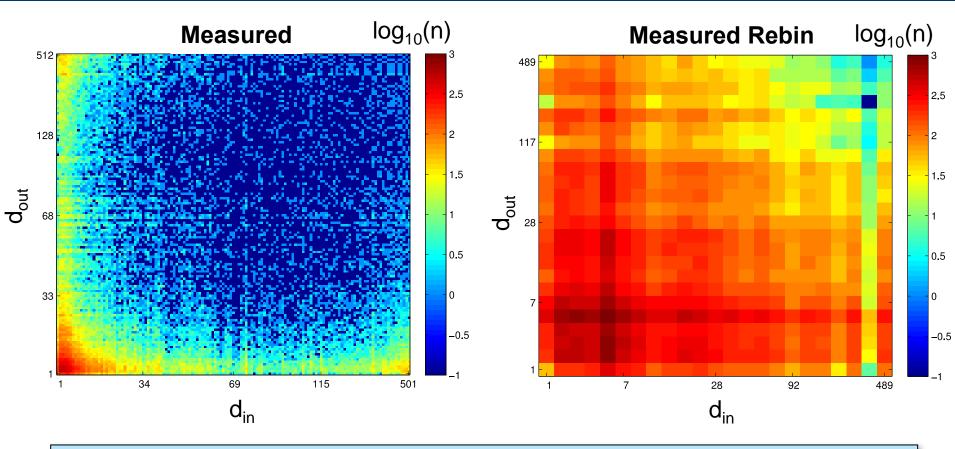
- Measured
- Expected
- Time Evolution

- Reuter's Data
- Summary

- Label each vertex by degree
- Count number of edges from d_{out} to d_{in}: n(d_{out},d_{in})
- Rebin based on perfect power law model
- Can compare measured vs. expected

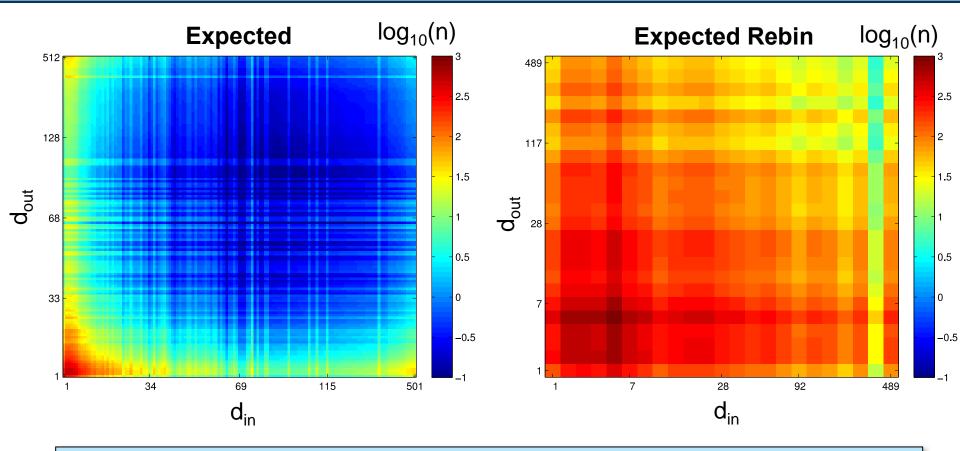
Power law model allows precise quantitative comparison of observed data with a model

Measured Joint Distribution

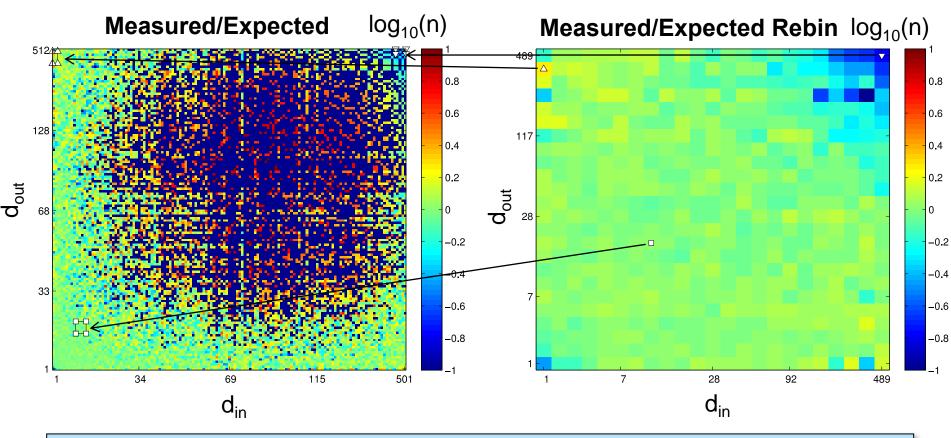


- Measured distribution is highly sparse
- Rebinning based on power law fit degree bins makes most bins not empty

Expected Joint Distribution

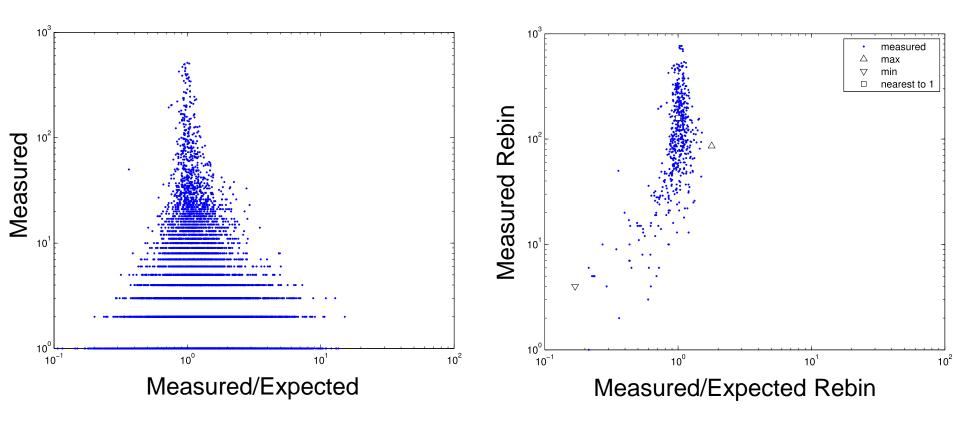


• Using $n(d_{out})$ and $n(d_{in})$ can compute expected $n(d_{out}, d_{in}) = n(d_{out}) \times n(d_{in})/M$



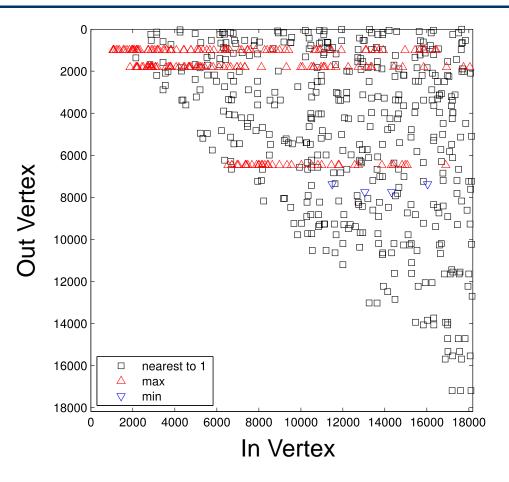
- Ratio of measured to expected highlights surpluses \triangle , deficits \bigtriangledown , typical edges \square
- Binning reduces Poisson fluctuations and allows for more meaningful selection

Measured/Expected Joint Distribution



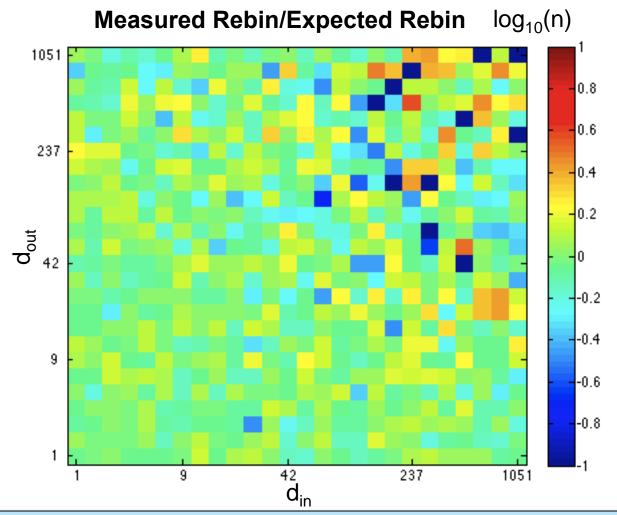
- Ratio of measured to expected highlights surpluses \triangle , deficits \bigtriangledown , typical edges \Box
- Binning reduces Poisson fluctuations and allows for more meaningful selection

Selected Edges



- Ratio of measured to expected highlights surpluses △, deficits ▽, typical edges □
- Can use to select actual edges that correspond to fluctuations

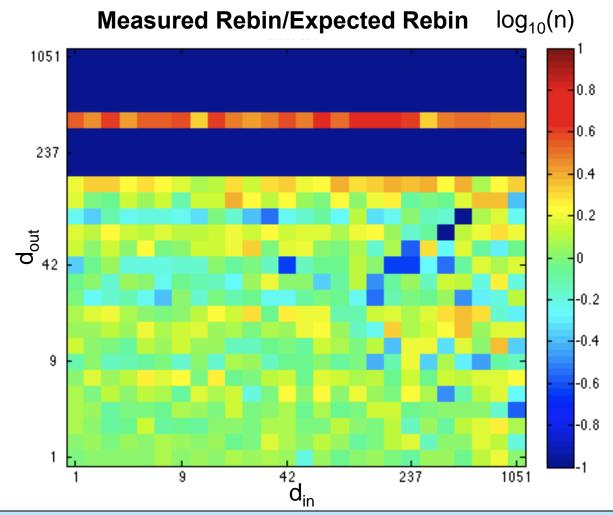
Measured/Expected Random Edge Order



Ratio of measured to expected highlights unusual correlations

$\overline{\otimes}$

Measured/Expected Linear Edge Order



• Ratio of measured to expected highlights unusual correlations

Outline

- Introduction
- Sampling
- Sub-sampling
- Joint Distribution
- Reuter's Data
- Summary

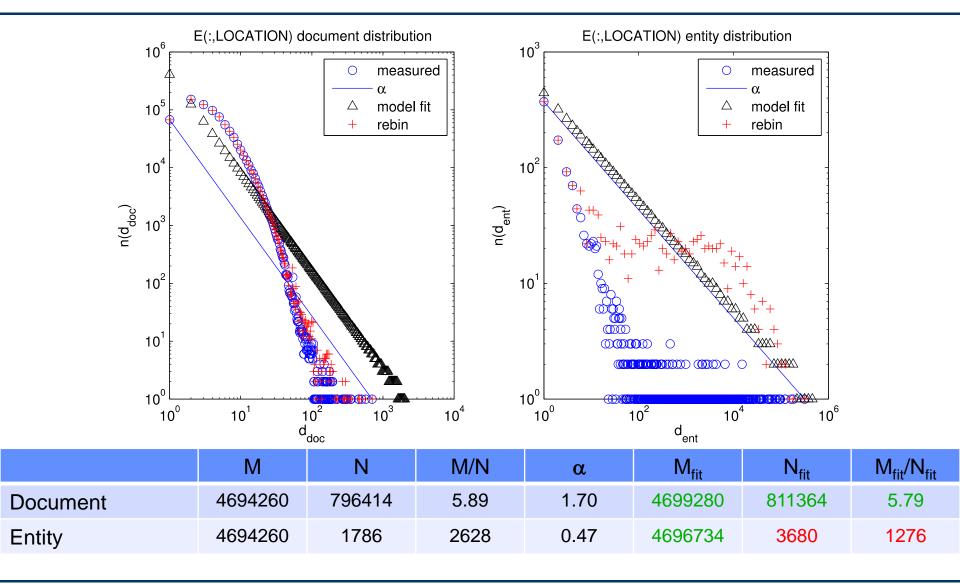
- Degree distributions
- Correlation Graph
- Densification
- Joint distributions

- Entities extracted from Reuter's Corpus
- E(i,j) = # times entity appeared in document
- $N_{doc} = 797677$
- $N_{ent} = 47576$
- M = 6132286
- Four entity classes with different statistics
 - LOCATION
 - ORGANZATION
 - PERSON
 - TIME

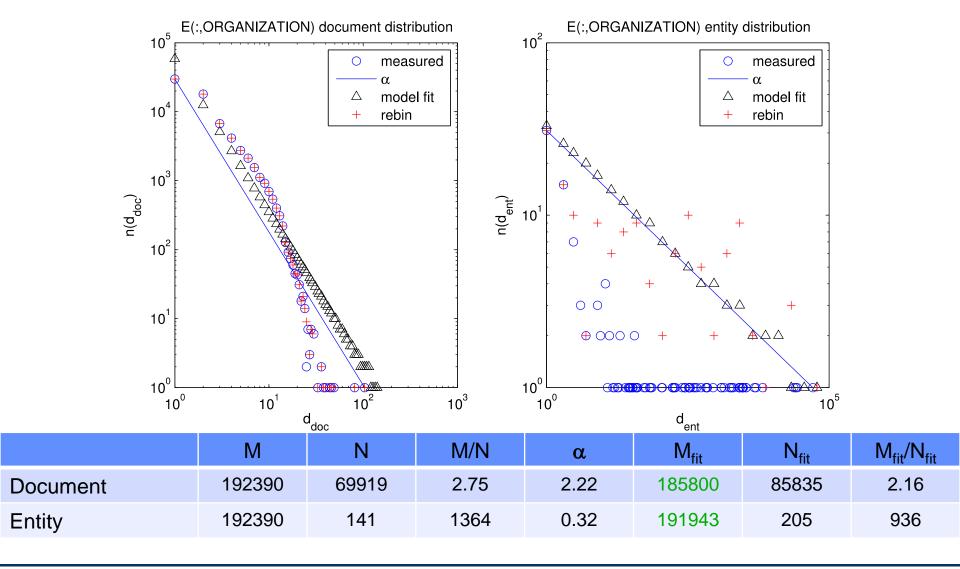


Fit power law model to each entity class

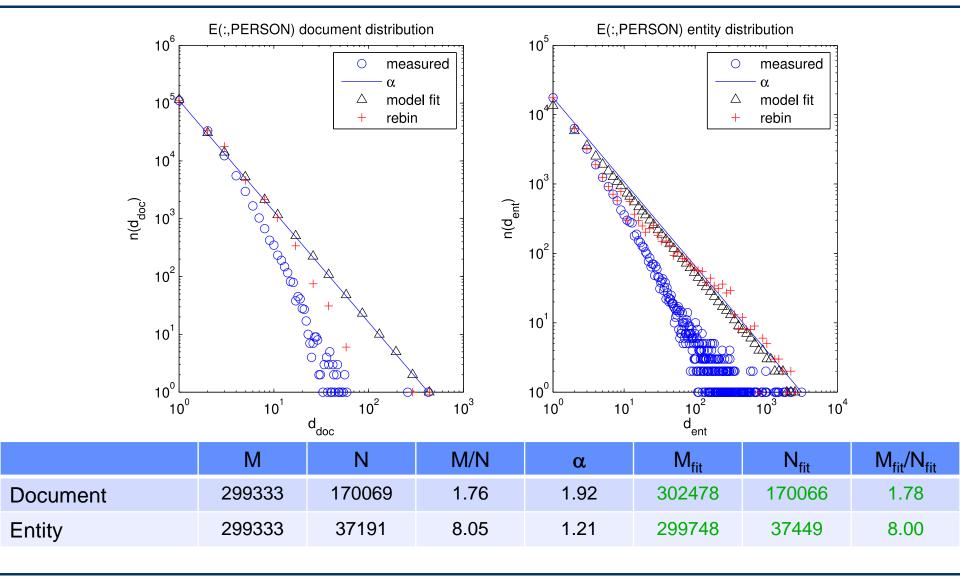
E(:,LOCATION) Degree Distribution



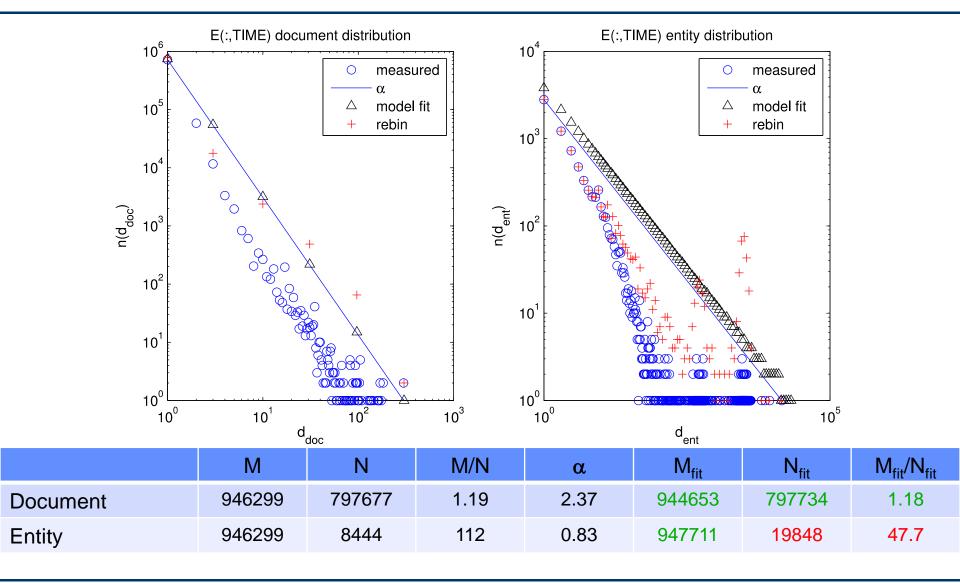
E(:,ORGANIZATION) Degree Distribution



E(:,PERSON) Degree Distribution



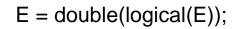
E(:,TIME) Degree Distribution



E(:,PERSON)^t x E(:,PERSON)

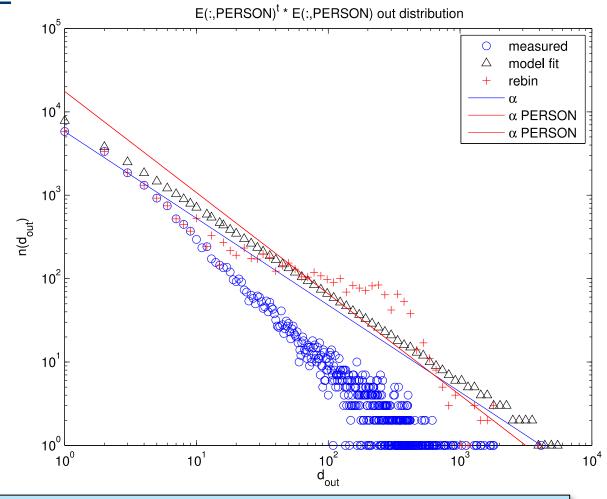
Procedure

 Make unweighted and use to form correlation matrix A with no selfloops



A = triu(E' * E);

```
A = A - diag(diag(A));
```



- Perfect power law fit to correlation shows non-power law shape
- Reveals "witches nose" distribution

E(:,TIME)^t x E(:,TIME)

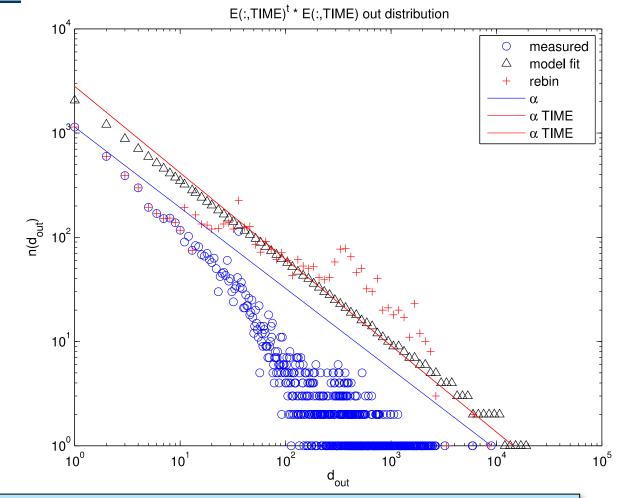
Procedure

 Make unweighted and use to form correlation matrix A with no selfloops

E = double(logical(E));

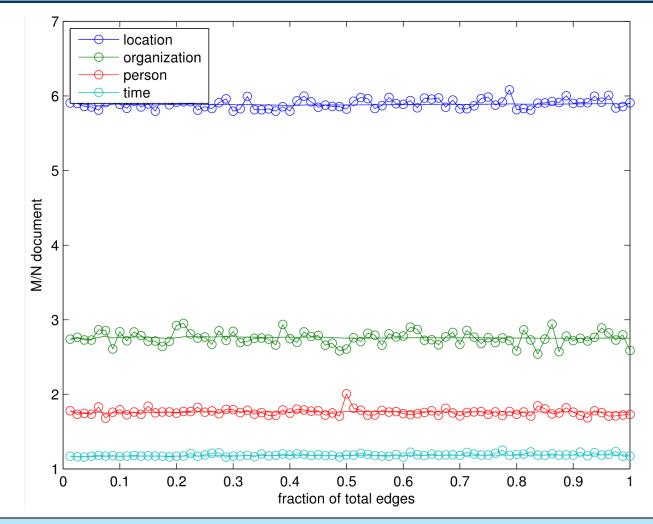
A = triu(E' * E);

```
A = A - diag(diag(A));
```



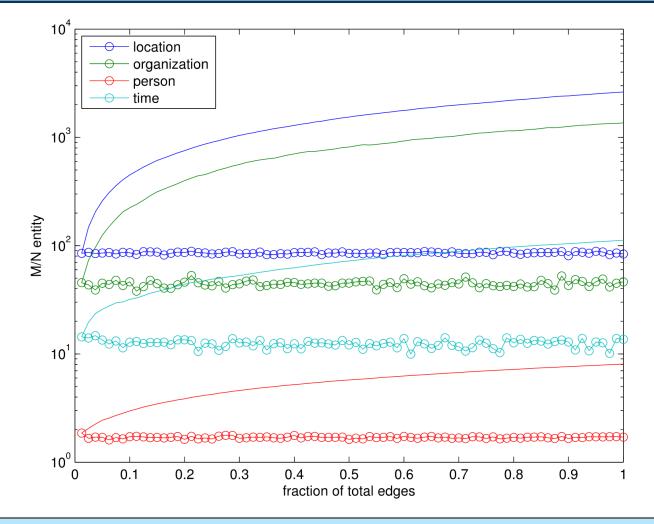
- Perfect power law fit to correlation shows non-power law shape
- Reveals "witches nose" distribution

Document Densification



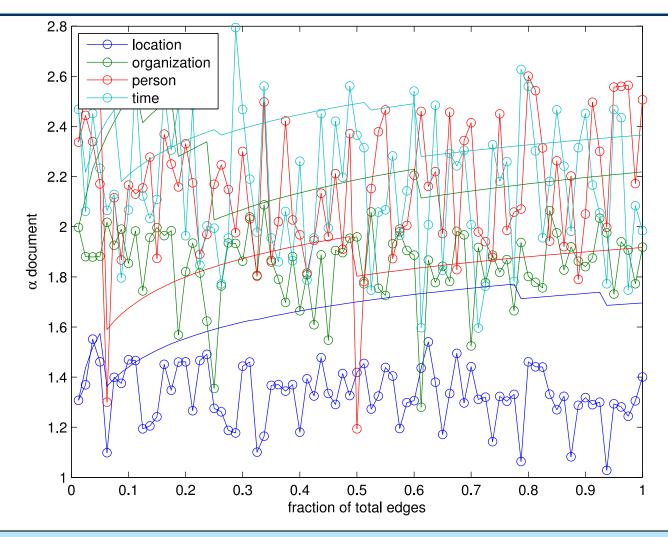
Constant M/N consistent with sequential ordering of documents

Entity Densification



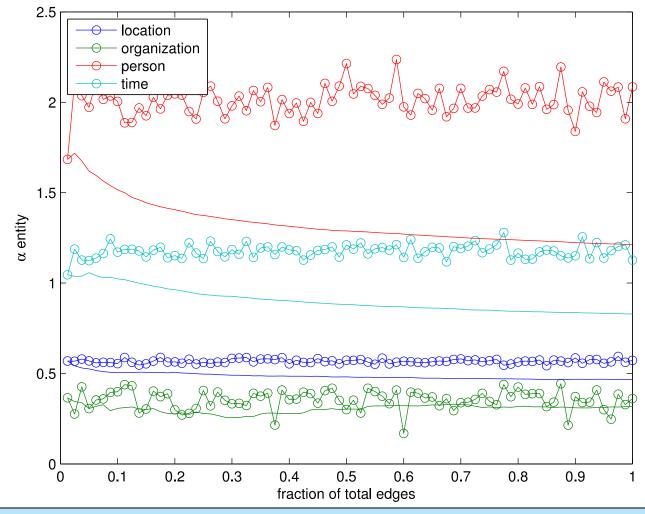
Increasing M/N consistent with random ordering of entities

Document Power Law Exponent (α)



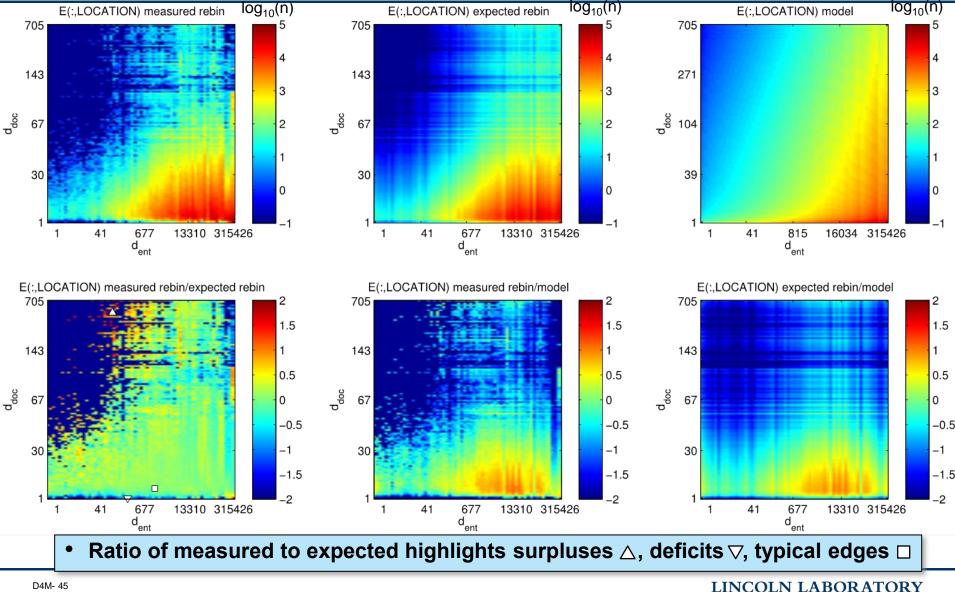
- Increasing α consistent with sequential ordering of documents

Entity Power Law Exponent (α)



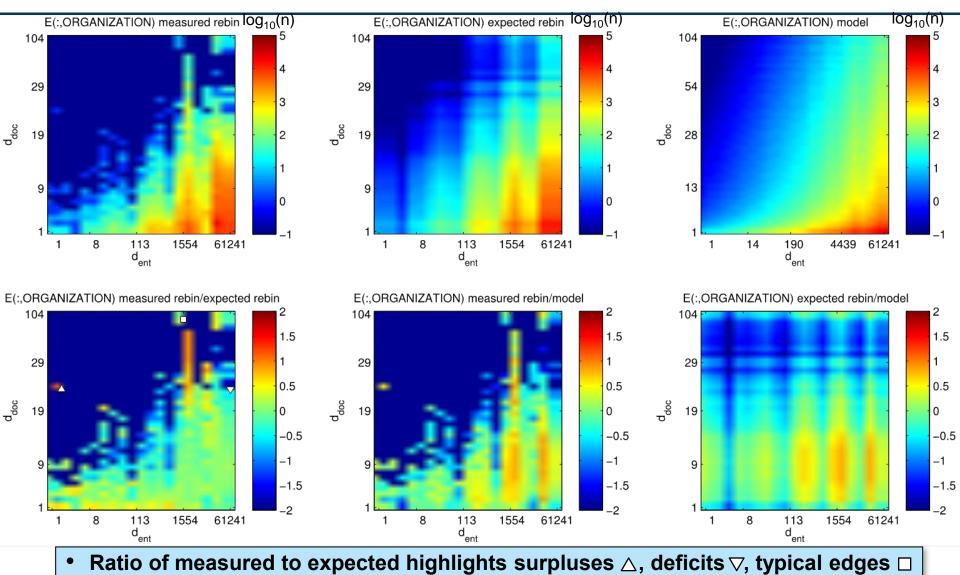
- Decreasing α consistent with random ordering of entities

E(:,LOCATION) Joint Distribution



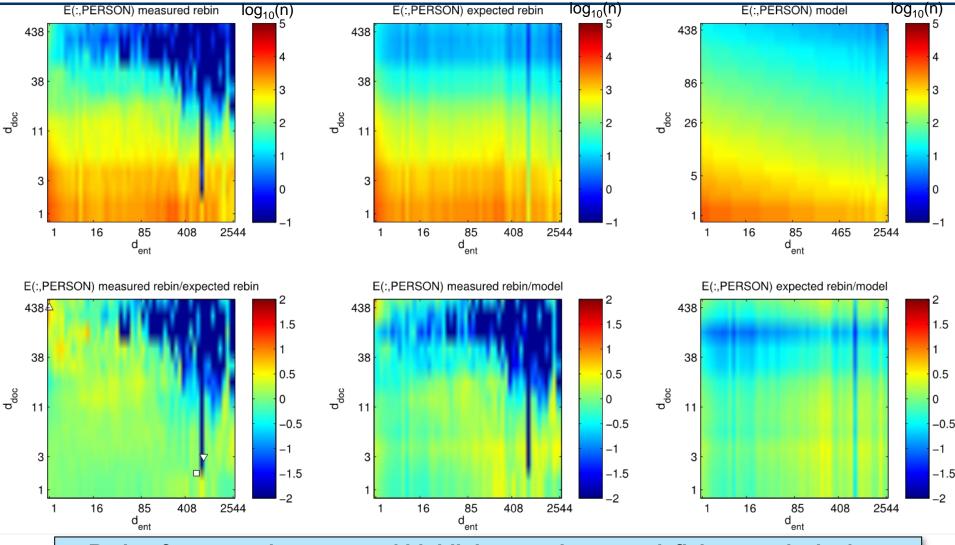
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

E(:,ORGANIZATION) Joint Distribution



LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

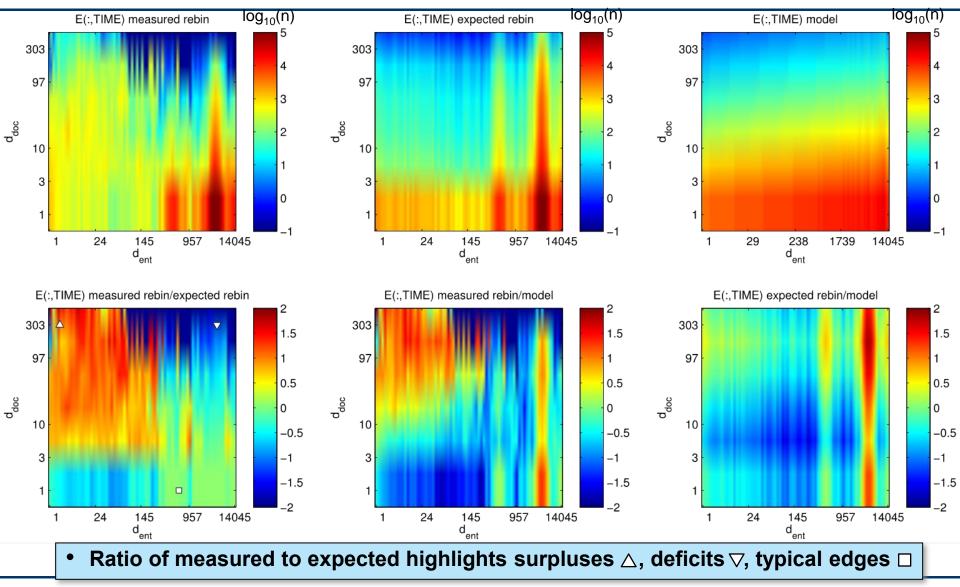
E(:,PERSON) Joint Distribution



Ratio of measured to expected highlights surpluses △, deficits ▽, typical edges □

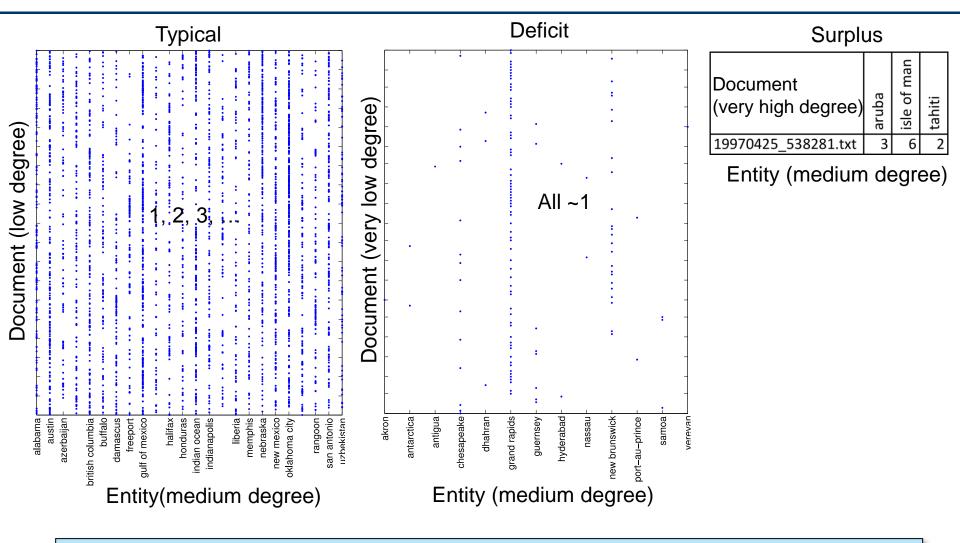
LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

E(:,TIME) Joint Distribution



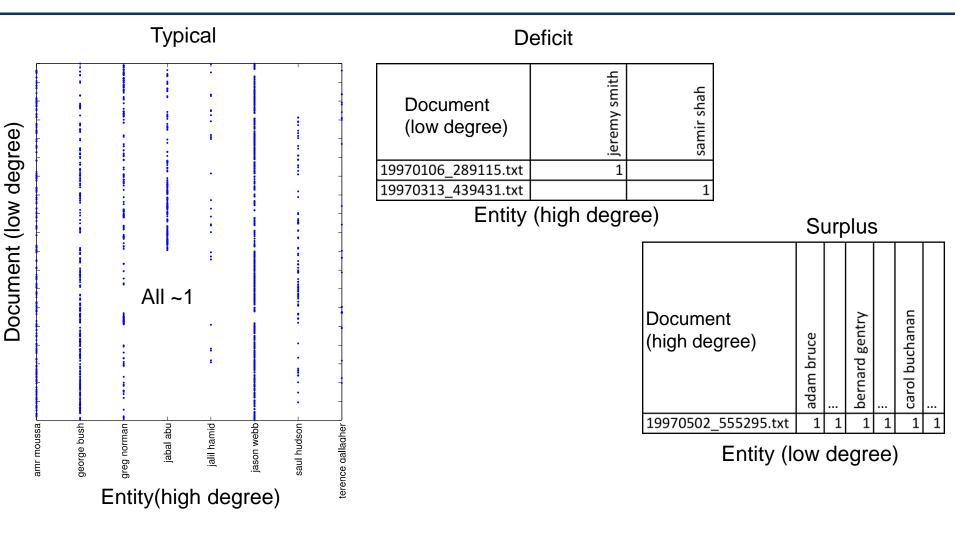
LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Selected Edges E(:,LOCATION)



Highlights anomalous edges

Selected Edges E(:,PERSON)



Highlights anomalous edges

Summary

- Develop a background model for graphs based on "perfect" power law
 - Can be done via simple heuristic
 - Reproduces much of observed phenomena
- Examine effects of sampling such a power law
 - Lossy, non-linear transformation of graph construction mirrors many observed phenomena
- Traditional sampling approaches significantly overestimate the probability of low degree vertices
 - Assuming a power law distribution it is possible to construct a simple non-linear estimate that is more accurate
- Develop techniques for comparing real data with a power law model
 - Can fit perfect power-law to observed data
 - Provided binning for statistical tests
- Use power law model to measure deviations from background in real data
 - Can find typical, surplus and deficit edges

- Example Code
 - d4m_api/examples/2Apps/3PerfectPowerLaw
- Assignment 4
 - Compute the degree distributions of cross-correlations you found in Assignment 2
 - Explain the meaning of each degree distribution

RES-LL.005 D4M: Signal Processing on Databases Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.