
R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 1Information Flow: Algorithm Efficiency
© 2013 MIT

C
o
n
t
en

t
s

+

Developed by the Teaching and Learning Laboratory at MIT
for the Singapore University of Technology and Design

Algorithm Efficiency
Information Flow

Instructor’s Guide

Table of Contents

Introduction . 2
When to Use this Video . 2
Learning Objectives . 2
Motivation . 2
Student Experience . 2
Key Information . 2
Video Highlights . 3
Video Summary . 3

Course Materials . 4
Pre-Video Materials . 4
Post-Video Materials . 5

Additional Resources . 7
References . 7

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 2Information Flow: Algorithm Efficiency
© 2013 MIT

In
t
r
o

Introduction
When to Use this Video

•	 In an introductory programming course, at
home or in recitation .

•	 Prior knowledge: basic computer programming,
recursion, and algorithms

Learning Objectives
After watching this video students will be able to:

•	 Identify common resource limitations when
programming .

•	 Understand speed and space and how they may be related .
•	 Understand how efficiency affects modern problem solving .

Motivation
•	 Modern computers are continually offering increasing computing speed, dynamic memory,

and storage space . As a result, students may fail to grasp the importance of designing
efficient algorithms .

•	 Programming demands are also continually growing, in many cases at a faster pace
than computing resources . This video helps acquaint students with the scale of modern
programming problems and convince them of the perpetual need for efficient design .

Student Experience
It is highly recommended that the video is paused when prompted so that students are able to attempt the
activities on their own and then check their solutions against the video .

During the video, students will:

•	 Consider resources other than speed and space that must be utilized efficiently in
programming .

•	 Calculate the number of function calls needed for a given inefficient solution .
•	 Brainstorm ways to improve the efficiency of a solution .
•	 Consider the efficiency bottlenecks of real-world programming problems .

Key Information
Duration: 15:04
Narrator: Prof . Charles Leiserson
Materials Needed:
•	paper
•	pencil

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 3Information Flow: Algorithm Efficiency
© 2013 MIT

In
t
r
o

Video Highlights
This table outlines a collection of activities and important ideas from the video .

Time Feature Comments
1:15 Introduction and motivation Dr . Leiserson introduces the concept of efficiency

and discusses why it’s important to think about
speed and space in particular .

4:08 Classic algorithm example: finding
Fibonacci numbers three ways

A function for finding the nth number of the
Fibonacci sequence is implemented three ways,
with each subsequent implementation improving
on one aspect of efficiency .

10:00 A look at how computer resources have
changes over the decades

Processor speeds and RAM have increased
by many orders of magnitude since the first
computers from the 1970s .

11:18 Motivating example: electronic trading This is an opportunity for students to understand
the type of timescale that can matter in certain
applications .

12:30 Motivating example: genome alignment This is an opportunity for students to understand
the large size of data that may be involved with
certain applications .

13:52 Motivating example: smartphone
applications

This example taps into many students’ first-hand
experience with the bottleneck of speed and
space . Students may better appreciate the need
for efficiently operating applications if they
are dealing with them daily on their personal
smartphone devices .

Video Summary
In this video, MIT professor of Computer Science and Engineering Charles Leiserson explains the
importance of speed and space efficiency in programming . He guides students through different
methods of computing the Fibonacci sequence and discusses the differences in efficiency of each
version . Next, students are presented with several modern programming scenarios . Opportunities
for pausing the video are provided so that students may independently consider and appreciate the
different factors of efficiency in each example .

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 4Information Flow: Algorithm Efficiency
© 2013 MIT

C
o
u
r
se

w
o
r
k

Course Materials
Pre-Video Materials
Students should be able to write simple programs before watching this video . The following pre-video
activities could be used to reinforce this skill .

When appropriate, this guide is accompanied by additional materials to aid in the delivery of some of the
following activities and discussions .

1. Basic programming refresher: Factorial

In mathematics, the factorial of a non-negative integer n is equal to the product of all positive
integers less than or equal to n . For example, 4! is equal to 4 x 3 x 2 x 1 = 24 .

(a) Solve 5!
(b) Solve 6!
(c) Using pseudocode or a programming language you are comfortable with, write a function for

factorial(n) .

2. Fibonacci numbers

The Fibonacci Sequence is defined as Fib(0)=0, Fib(1)=1, and Fib(n) = Fib(n-1) + Fib(n-2) for
n>=2 . Write out the Fibonacci sequence from n=0 through n=10 .

	
	 	

	

	

	
	 	

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 5Information Flow: Algorithm Efficiency
© 2013 MIT

C
o
u
r
se

w
o
r
k

Post-Video Materials
Use the following activities to reinforce and extend the concepts in the video .

1. Consider the following version of the Fibonacci function using memoization from the video:

#variable for memoization
declare table

Function Fib-memo(n)
{
 if(entry for n exists in table){ return entry; }
 elseif(n==0) return 0;
 elseif(n==1) return 1;
 else
 {
 f = Fib_memo(n-2) * Fib_memo(n-1);
 store [n,f] in table;
 return f;
 }
}

(a) Recall that Fib-memo of n=8 utilized 15 function calls and 8M space . Draw the
corresponding function call tree for Fib-memo of n=9 . How many function calls occur?
How much space is used?

(b) Using pseudocode or a language you are comfortable with, write the code for the iterative
version of Fibonacci presented in the video .

(c) How many function calls and how much space is used for the iterative version of Fibonacci
of n=9?

2. Recall the genome alignment example from the video, where 5GB of the RAM was utilized
by the raw data . Keep in mind that in reality, it is not uncommon for the amount of data to even
exceed 8GB of space! Let’s continue on working with 30 million reads, which require 2GB of
space . Say we want to sort the reads using various basic sort algorithms you may have already
been introduced to . The following table summarizes the average time (where n=the number of
reads to be sorted) and average space (where m=the size of the data set) required in addition to
the space already used by the data itself .

(a) How much time is required for each algorithm? Which algorithm(s) perform the best?
(b) How much space is required for each algorithm? Which algorithm(s) perform the best with

respect to both speed and space?
(c) In the worst-case scenario, Quick Sort requires n2 time and n space . How much more time

and space is this than the average case? What happens to time and space if you are sorting
60 million reads?

	

	

	

	

	

	

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 6Information Flow: Algorithm Efficiency
© 2013 MIT

C
o
u
r
se

w
o
r
k

Algorithm Average Time Average Space
Quick Sort n*log(n) log(m)
Heap Sort n*log(n) 1

Insertion Sort n2 1

3. In the video, we only touched briefly on how speed and space efficiency can have
consequences on energy usage . One way to measure how much work a program requires is by
using CPU hours, or the amount of time a processor needs to operate at full capacity in order to
finish the task . Consider a modern programming task that uses 1000 CPU hours to run .

(a) If the job is run on a computer cluster rated at 1400 Watts (W), how much energy (in
kilowatt-hours, or kWh) is used? Hint: use the estimate that a 40W appliance constantly
running uses 1kWh/day from the electricity grid .

(b) Consider that 1 gallon of gasoline contains 36 .6kWh of energy, only 15% of which is
actually utilized to move a car down the road . If an average midsize car can travel 24 .7 miles
on a gallon of gas, how much energy (in kWh) is used to travel 380 miles, or roughly the
distance from San Francisco, CA to Los Angeles, CA? How many times can you travel this
distance using 1000 CPU hours-worth of energy?

(c) How many gallons of gasoline are needed to run the cluster per hour?
(d) Suppose you can parallelize your program to use four processor cores, effectively reducing

the number of CPU hours by one fourth to 250 . What is the corresponding distance you
can travel by car?

	

	

	

	

R
es

ou
rc

es
C

on
te

nt
s

In
tr

o
C

ou
rs

ew
or

k

Page 7Information Flow: Algorithm Efficiency
© 2013 MIT

R
es

o
u
R
c
es

Additional Resources
References
Algorithmic efficiency is an extremely complex topic with many rich sub-fields of study . A good starting
point for beginning students is MIT Open CourseWare’s Introduction to Algorithms class . Course
materials, including lectures, reading, and assignments are available online:

•	 Leiserson, Charles, and Erik Demaine . 6 .046J Introduction to Algorithms (SMA 5503),
Fall 2005 . (MIT OpenCourseWare: Massachusetts Institute of Technology), http://ocw .
mit .edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-
algorithms-sma-5503-fall-2005 (Accessed 4 Dec, 2013) . License: Creative Commons
BY-NC-SA

An in depth look at programming the Fibonacci in python and stepping through function calls is
available:

•	 Khan Academy: “Recursive Fibonacci Example” . Retrieved July 28, 2013, from https://
www .khanacademy .org/science/computer-science/v/recursive-fibonacci-example

Information on gasoline and engine efficiency were obtained from the following:

•	 Energy available in gasoline: HowStuffWorks “How Gasoline Works .” Retrieved July 28,
2013, from http://science .howstuffworks .com/gasoline2 .htm

•	 Energy usage from gasoline: Energy Fuel Economy: Where the Energy Goes . Retrieved
July 28, 2013, from http://www .fueleconomy .gov/feg/atv .shtml

•	 Average miles per gallon for a light-duty vehicle: Sustainable Worldwide Transportation
- Eco-Driving - sales-weighted fuel economy . Retrieved July 28, 2013, from http://www .
umich .edu/~umtriswt/EDI_sales-weighted-mpg .html

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-introduction-to-algorithms-sma-5503-fall-2005
https://www.khanacademy.org/science/computer-science/v/recursive-fibonacci-example
https://www.khanacademy.org/science/computer-science/v/recursive-fibonacci-example
http://science.howstuffworks.com/gasoline2.htm
http://www.fueleconomy.gov/feg/atv.shtml
http://www.umich.edu/~umtriswt/EDI_sales-weighted-mpg.html
http://www.umich.edu/~umtriswt/EDI_sales-weighted-mpg.html

MIT OpenCourseWare
http://ocw.mit.edu

RES.TLL.004 STEM Concept Videos
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

